ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mice, Inbred C57BL  (22)
  • Nature Publishing Group (NPG)  (22)
  • American Physical Society
  • 2005-2009  (22)
  • 1980-1984
  • 1965-1969
  • 2008  (22)
  • 2007
Collection
Publisher
Years
  • 2005-2009  (22)
  • 1980-1984
  • 1965-1969
Year
  • 2008  (22)
  • 2007
  • 2009  (23)
  • 1
    Publication Date: 2008-12-05
    Description: Stem cells reside in a specialized, regulatory environment termed the niche that dictates how they generate, maintain and repair tissues. We have previously documented that transplanted haematopoietic stem and progenitor cell populations localize to subdomains of bone-marrow microvessels where the chemokine CXCL12 is particularly abundant. Using a combination of high-resolution confocal microscopy and two-photon video imaging of individual haematopoietic cells in the calvarium bone marrow of living mice over time, we examine the relationship of haematopoietic stem and progenitor cells to blood vessels, osteoblasts and endosteal surface as they home and engraft in irradiated and c-Kit-receptor-deficient recipient mice. Osteoblasts were enmeshed in microvessels and relative positioning of stem/progenitor cells within this complex tissue was nonrandom and dynamic. Both cell autonomous and non-autonomous factors influenced primitive cell localization. Different haematopoietic cell subsets localized to distinct locations according to the stage of differentiation. When physiological challenges drove either engraftment or expansion, bone-marrow stem/progenitor cells assumed positions in close proximity to bone and osteoblasts. Our analysis permits observing in real time, at a single cell level, processes that previously have been studied only by their long-term outcome at the organismal level.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2820276/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2820276/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lo Celso, Cristina -- Fleming, Heather E -- Wu, Juwell W -- Zhao, Cher X -- Miake-Lye, Sam -- Fujisaki, Joji -- Cote, Daniel -- Rowe, David W -- Lin, Charles P -- Scadden, David T -- R01 EY014106/EY/NEI NIH HHS/ -- R01 EY014106-05/EY/NEI NIH HHS/ -- England -- Nature. 2009 Jan 1;457(7225):92-6. doi: 10.1038/nature07434. Epub 2008 Dec 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19052546" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blood Vessels/cytology ; Bone Marrow ; Cell Division ; Cell Separation ; Hematopoietic Stem Cells/*cytology ; Mice ; Mice, Inbred C57BL ; Osteoblasts/cytology ; Proto-Oncogene Proteins c-kit/genetics/metabolism ; Skull/cytology ; Stem Cell Niche/*cytology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-11-11
    Description: Angiogenesis does not only depend on endothelial cell invasion and proliferation: it also requires pericyte coverage of vascular sprouts for vessel stabilization. These processes are coordinated by vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) through their cognate receptors on endothelial cells and vascular smooth muscle cells (VSMCs), respectively. PDGF induces neovascularization by priming VSMCs/pericytes to release pro-angiogenic mediators. Although VEGF directly stimulates endothelial cell proliferation and migration, its role in pericyte biology is less clear. Here we define a role for VEGF as an inhibitor of neovascularization on the basis of its capacity to disrupt VSMC function. Specifically, under conditions of PDGF-mediated angiogenesis, VEGF ablates pericyte coverage of nascent vascular sprouts, leading to vessel destabilization. At the molecular level, VEGF-mediated activation of VEGF-R2 suppresses PDGF-Rbeta signalling in VSMCs through the assembly of a previously undescribed receptor complex consisting of PDGF-Rbeta and VEGF-R2. Inhibition of VEGF-R2 not only prevents assembly of this receptor complex but also restores angiogenesis in tissues exposed to both VEGF and PDGF. Finally, genetic deletion of tumour cell VEGF disrupts PDGF-Rbeta/VEGF-R2 complex formation and increases tumour vessel maturation. These findings underscore the importance of VSMCs/pericytes in neovascularization and reveal a dichotomous role for VEGF and VEGF-R2 signalling as both a promoter of endothelial cell function and a negative regulator of VSMCs and vessel maturation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2605188/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2605188/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Greenberg, Joshua I -- Shields, David J -- Barillas, Samuel G -- Acevedo, Lisette M -- Murphy, Eric -- Huang, Jianhua -- Scheppke, Lea -- Stockmann, Christian -- Johnson, Randall S -- Angle, Niren -- Cheresh, David A -- GM 68524/GM/NIGMS NIH HHS/ -- P01 CA078045/CA/NCI NIH HHS/ -- P01 CA078045-050004/CA/NCI NIH HHS/ -- P01 CA078045-100004/CA/NCI NIH HHS/ -- P01 CA078045-109001/CA/NCI NIH HHS/ -- R01 CA095262/CA/NCI NIH HHS/ -- R01 CA095262-06/CA/NCI NIH HHS/ -- R01 CA118165/CA/NCI NIH HHS/ -- R01 HL078912/HL/NHLBI NIH HHS/ -- R01 HL078912-04/HL/NHLBI NIH HHS/ -- R21 CA129660/CA/NCI NIH HHS/ -- R21 CA129660-02/CA/NCI NIH HHS/ -- R37 CA050286/CA/NCI NIH HHS/ -- R37 CA050286-19/CA/NCI NIH HHS/ -- R37 CA050286-20/CA/NCI NIH HHS/ -- R37-CA082515/CA/NCI NIH HHS/ -- R37-CA50286/CA/NCI NIH HHS/ -- England -- Nature. 2008 Dec 11;456(7223):809-13. doi: 10.1038/nature07424. Epub 2008 Nov 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Surgery, School of Medicine, Moore's UCSD Cancer Center, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18997771" target="_blank"〉PubMed〈/a〉
    Keywords: Angiogenesis Inhibitors/pharmacology ; Animals ; Blood Vessels/*metabolism ; Cell Line ; Cells, Cultured ; Fibrosarcoma/blood supply ; Humans ; Mice ; Mice, Inbred C57BL ; Mice, Nude ; Neovascularization, Physiologic/drug effects/*physiology ; Pericytes/drug effects/*metabolism ; Platelet-Derived Growth Factor/*metabolism/pharmacology ; Receptor, Platelet-Derived Growth Factor beta/metabolism ; Receptors, Vascular Endothelial Growth Factor/metabolism ; Signal Transduction ; Vascular Endothelial Growth Factor A/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-04-25
    Description: Rod and cone photoreceptors detect light and relay this information through a multisynaptic pathway to the brain by means of retinal ganglion cells (RGCs). These retinal outputs support not only pattern vision but also non-image-forming (NIF) functions, which include circadian photoentrainment and pupillary light reflex (PLR). In mammals, NIF functions are mediated by rods, cones and the melanopsin-containing intrinsically photosensitive retinal ganglion cells (ipRGCs). Rod-cone photoreceptors and ipRGCs are complementary in signalling light intensity for NIF functions. The ipRGCs, in addition to being directly photosensitive, also receive synaptic input from rod-cone networks. To determine how the ipRGCs relay rod-cone light information for both image-forming and non-image-forming functions, we genetically ablated ipRGCs in mice. Here we show that animals lacking ipRGCs retain pattern vision but have deficits in both PLR and circadian photoentrainment that are more extensive than those observed in melanopsin knockouts. The defects in PLR and photoentrainment resemble those observed in animals that lack phototransduction in all three photoreceptor classes. These results indicate that light signals for irradiance detection are dissociated from pattern vision at the retinal ganglion cell level, and animals that cannot detect light for NIF functions are still capable of image formation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2871301/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2871301/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guler, Ali D -- Ecker, Jennifer L -- Lall, Gurprit S -- Haq, Shafiqul -- Altimus, Cara M -- Liao, Hsi-Wen -- Barnard, Alun R -- Cahill, Hugh -- Badea, Tudor C -- Zhao, Haiqing -- Hankins, Mark W -- Berson, David M -- Lucas, Robert J -- Yau, King-Wai -- Hattar, Samer -- R01 DC006904/DC/NIDCD NIH HHS/ -- R01 DC006904-01/DC/NIDCD NIH HHS/ -- R01 DC006904-02/DC/NIDCD NIH HHS/ -- R01 DC006904-03/DC/NIDCD NIH HHS/ -- R01 DC006904-04/DC/NIDCD NIH HHS/ -- R01 EY006837/EY/NEI NIH HHS/ -- R01 EY006837-16A1/EY/NEI NIH HHS/ -- R01 EY006837-18/EY/NEI NIH HHS/ -- R01 EY006837-20A1/EY/NEI NIH HHS/ -- R01 EY006837-21/EY/NEI NIH HHS/ -- R01 EY014596/EY/NEI NIH HHS/ -- R01 EY014596-01/EY/NEI NIH HHS/ -- R01 EY014596-02/EY/NEI NIH HHS/ -- R01 EY014596-03/EY/NEI NIH HHS/ -- R01 EY014596-04/EY/NEI NIH HHS/ -- R01 EY014596-05/EY/NEI NIH HHS/ -- R01 EY014596-06/EY/NEI NIH HHS/ -- R01 EY017137/EY/NEI NIH HHS/ -- R01 GM076430/GM/NIGMS NIH HHS/ -- R01 GM076430-01/GM/NIGMS NIH HHS/ -- R01 GM076430-02/GM/NIGMS NIH HHS/ -- R01 GM076430-03/GM/NIGMS NIH HHS/ -- R01 GM076430-04/GM/NIGMS NIH HHS/ -- R01 GM076430-05/GM/NIGMS NIH HHS/ -- England -- Nature. 2008 May 1;453(7191):102-5. doi: 10.1038/nature06829. Epub 2008 Apr 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18432195" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/cytology/metabolism ; Circadian Rhythm/physiology/radiation effects ; Cues ; Electroretinography ; Light ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Motor Activity/physiology ; Pupil/physiology/radiation effects ; Reflex/physiology/radiation effects ; Retinal Cone Photoreceptor Cells/*metabolism ; Retinal Ganglion Cells/*cytology/*metabolism ; Retinal Rod Photoreceptor Cells/*metabolism ; Rod Opsins/deficiency/genetics/*metabolism ; Vision, Ocular/*physiology/radiation effects ; Visual Acuity/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-03-28
    Description: T helper cells that produce IL-17 (T(H)17 cells) promote autoimmunity in mice and have been implicated in the pathogenesis of human inflammatory diseases. At mucosal surfaces, T(H)17 cells are thought to protect the host from infection, whereas regulatory T (T(reg)) cells control immune responses and inflammation triggered by the resident microflora. Differentiation of both cell types requires transforming growth factor-beta (TGF-beta), but depends on distinct transcription factors: RORgammat (encoded by Rorc(gammat)) for T(H)17 cells and Foxp3 for T(reg) cells. How TGF-beta regulates the differentiation of T cells with opposing activities has been perplexing. Here we demonstrate that, together with pro-inflammatory cytokines, TGF-beta orchestrates T(H)17 cell differentiation in a concentration-dependent manner. At low concentrations, TGF-beta synergizes with interleukin (IL)-6 and IL-21 (refs 9-11) to promote IL-23 receptor (Il23r) expression, favouring T(H)17 cell differentiation. High concentrations of TGF-beta repress IL23r expression and favour Foxp3+ T(reg) cells. RORgammat and Foxp3 are co-expressed in naive CD4+ T cells exposed to TGF-beta and in a subset of T cells in the small intestinal lamina propria of the mouse. In vitro, TGF-beta-induced Foxp3 inhibits RORgammat function, at least in part through their interaction. Accordingly, lamina propria T cells that co-express both transcription factors produce less IL-17 (also known as IL-17a) than those that express RORgammat alone. IL-6, IL-21 and IL-23 relieve Foxp3-mediated inhibition of RORgammat, thereby promoting T(H)17 cell differentiation. Therefore, the decision of antigen-stimulated cells to differentiate into either T(H)17 or T(reg) cells depends on the cytokine-regulated balance of RORgammat and Foxp3.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597437/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597437/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Liang -- Lopes, Jared E -- Chong, Mark M W -- Ivanov, Ivaylo I -- Min, Roy -- Victora, Gabriel D -- Shen, Yuelei -- Du, Jianguang -- Rubtsov, Yuri P -- Rudensky, Alexander Y -- Ziegler, Steven F -- Littman, Dan R -- AI48779/AI/NIAID NIH HHS/ -- R01 AI048779/AI/NIAID NIH HHS/ -- R01 AI048779-05/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2008 May 8;453(7192):236-40. doi: 10.1038/nature06878. Epub 2008 Mar 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, New York 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18368049" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation/drug effects ; Cell Line ; Cells, Cultured ; Forkhead Transcription Factors/genetics/*metabolism ; Gene Expression Regulation/drug effects ; Humans ; Interleukin-17/biosynthesis/genetics/*metabolism ; Mice ; Mice, Inbred C57BL ; Nuclear Receptor Subfamily 1, Group F, Member 3 ; Receptors, Interleukin/genetics/metabolism ; Receptors, Retinoic Acid/*antagonists & inhibitors/genetics/metabolism ; Receptors, Thyroid Hormone/*antagonists & inhibitors/genetics/metabolism ; T-Lymphocytes, Helper-Inducer/*cytology/*drug effects/metabolism ; Transforming Growth Factor beta/*pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2008-10-22
    Description: The lymphatic system plays a key role in tissue fluid regulation and tumour metastasis, and lymphatic defects underlie many pathological states including lymphoedema, lymphangiectasia, lymphangioma and lymphatic dysplasia. However, the origins of the lymphatic system in the embryo, and the mechanisms that direct growth of the network of lymphatic vessels, remain unclear. Lymphatic vessels are thought to arise from endothelial precursor cells budding from the cardinal vein under the influence of the lymphatic hallmark gene Prox1 (prospero homeobox 1; ref. 4). Defects in the transcription factor gene SOX18 (SRY (sex determining region Y) box 18) cause lymphatic dysfunction in the human syndrome hypotrichosis-lymphoedema-telangiectasia, suggesting that Sox18 may also play a role in lymphatic development or function. Here we use molecular, cellular and genetic assays in mice to show that Sox18 acts as a molecular switch to induce differentiation of lymphatic endothelial cells. Sox18 is expressed in a subset of cardinal vein cells that later co-express Prox1 and migrate to form lymphatic vessels. Sox18 directly activates Prox1 transcription by binding to its proximal promoter. Overexpression of Sox18 in blood vascular endothelial cells induces them to express Prox1 and other lymphatic endothelial markers, while Sox18-null embryos show a complete blockade of lymphatic endothelial cell differentiation from the cardinal vein. Our findings demonstrate a critical role for Sox18 in developmental lymphangiogenesis, and suggest new avenues to investigate for therapeutic management of human lymphangiopathies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Francois, Mathias -- Caprini, Andrea -- Hosking, Brett -- Orsenigo, Fabrizio -- Wilhelm, Dagmar -- Browne, Catherine -- Paavonen, Karri -- Karnezis, Tara -- Shayan, Ramin -- Downes, Meredith -- Davidson, Tara -- Tutt, Desmond -- Cheah, Kathryn S E -- Stacker, Steven A -- Muscat, George E O -- Achen, Marc G -- Dejana, Elisabetta -- Koopman, Peter -- England -- Nature. 2008 Dec 4;456(7222):643-7. doi: 10.1038/nature07391. Epub 2008 Oct 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18931657" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biomarkers/analysis ; *Cell Differentiation ; Cell Movement ; Cells, Cultured ; Edema/genetics ; Endothelial Cells/cytology/metabolism ; Ephrin-B2/genetics ; Female ; Gene Expression Regulation, Developmental ; Homeodomain Proteins/genetics ; Hypotrichosis/genetics ; Lymphangiogenesis ; Lymphatic Vessels/*cytology/*embryology/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Inbred CBA ; Promoter Regions, Genetic/genetics ; SOXF Transcription Factors/deficiency/genetics/*metabolism ; Telangiectasis/genetics ; Tumor Suppressor Proteins/genetics ; Vascular Endothelial Growth Factor Receptor-3/genetics ; Veins/cytology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2008-11-18
    Description: The Myc oncogene regulates the expression of several components of the protein synthetic machinery, including ribosomal proteins, initiation factors of translation, RNA polymerase III and ribosomal DNA. Whether and how increasing the cellular protein synthesis capacity affects the multistep process leading to cancer remains to be addressed. Here we use ribosomal protein heterozygote mice as a genetic tool to restore increased protein synthesis in Emu-Myc/+ transgenic mice to normal levels, and show that the oncogenic potential of Myc in this context is suppressed. Our findings demonstrate that the ability of Myc to increase protein synthesis directly augments cell size and is sufficient to accelerate cell cycle progression independently of known cell cycle targets transcriptionally regulated by Myc. In addition, when protein synthesis is restored to normal levels, Myc-overexpressing precancerous cells are more efficiently eliminated by programmed cell death. Our findings reveal a new mechanism that links increases in general protein synthesis rates downstream of an oncogenic signal to a specific molecular impairment in the modality of translation initiation used to regulate the expression of selective messenger RNAs. We show that an aberrant increase in cap-dependent translation downstream of Myc hyperactivation specifically impairs the translational switch to internal ribosomal entry site (IRES)-dependent translation that is required for accurate mitotic progression. Failure of this translational switch results in reduced mitotic-specific expression of the endogenous IRES-dependent form of Cdk11 (also known as Cdc2l and PITSLRE), which leads to cytokinesis defects and is associated with increased centrosome numbers and genome instability in Emu-Myc/+ mice. When accurate translational control is re-established in Emu-Myc/+ mice, genome instability is suppressed. Our findings demonstrate how perturbations in translational control provide a highly specific outcome for gene expression, genome stability and cancer initiation that have important implications for understanding the molecular mechanism of cancer formation at the post-genomic level.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2880952/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2880952/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barna, Maria -- Pusic, Aya -- Zollo, Ornella -- Costa, Maria -- Kondrashov, Nadya -- Rego, Eduardo -- Rao, Pulivarthi H -- Ruggero, Davide -- R01 HL085572/HL/NHLBI NIH HHS/ -- R01 HL085572-03/HL/NHLBI NIH HHS/ -- England -- Nature. 2008 Dec 18;456(7224):971-5. doi: 10.1038/nature07449. Epub 2008 Nov 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry & Biophysics, University of California San Francisco, Rock Hall Room 384C, 1550 Fourth Street, San Francisco, California 94158-2517, USA. maria.barna@ucsf.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19011615" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; B-Lymphocytes/cytology/metabolism/pathology ; Cell Division ; Cell Size ; Cells, Cultured ; Cytokinesis ; Gene Expression Regulation, Neoplastic ; Genes, myc/*genetics ; Genomic Instability ; Heterozygote ; Lymphoma/genetics/pathology ; Mice ; Mice, Inbred C57BL ; Mitosis ; Oncogene Protein p55(v-myc)/*genetics/*metabolism ; Precancerous Conditions/metabolism/pathology ; *Protein Biosynthesis ; Protein-Serine-Threonine Kinases/metabolism ; Ribosomal Proteins/*deficiency/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2008-05-13
    Description: The existence of a small population of 'cancer-initiating cells' responsible for tumour maintenance has been firmly demonstrated in leukaemia. This concept is currently being tested in solid tumours. Leukaemia-initiating cells, particularly those that are in a quiescent state, are thought to be resistant to chemotherapy and targeted therapies, resulting in disease relapse. Chronic myeloid leukaemia is a paradigmatic haematopoietic stem cell disease in which the leukaemia-initiating-cell pool is not eradicated by current therapy, leading to disease relapse on drug discontinuation. Here we define the critical role of the promyelocytic leukaemia protein (PML) tumour suppressor in haematopoietic stem cell maintenance, and present a new therapeutic approach for targeting quiescent leukaemia-initiating cells and possibly cancer-initiating cells by pharmacological inhibition of PML.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2712082/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2712082/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ito, Keisuke -- Bernardi, Rosa -- Morotti, Alessandro -- Matsuoka, Sahoko -- Saglio, Giuseppe -- Ikeda, Yasuo -- Rosenblatt, Jacalyn -- Avigan, David E -- Teruya-Feldstein, Julie -- Pandolfi, Pier Paolo -- K99 CA139009/CA/NCI NIH HHS/ -- R00 CA139009/CA/NCI NIH HHS/ -- R37 CA071692/CA/NCI NIH HHS/ -- R37 CA071692-12/CA/NCI NIH HHS/ -- England -- Nature. 2008 Jun 19;453(7198):1072-8. doi: 10.1038/nature07016. Epub 2008 May 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Genetics Program, Beth Israel Deaconess Cancer Center, Department of Medicine, Harvard Medical School, New Research Building, 330 Brookline Avenue, Boston, Massachusetts 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18469801" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Animals ; Arsenicals/pharmacology/therapeutic use ; Cell Line ; Coculture Techniques ; Female ; Gene Expression Regulation, Neoplastic ; Hematopoietic Stem Cells/pathology ; Humans ; Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism/*pathology ; Male ; Mice ; Mice, Inbred C57BL ; Neoplastic Stem Cells/metabolism/*pathology ; Nuclear Proteins/antagonists & inhibitors/deficiency/genetics/*metabolism ; Oxides/pharmacology/therapeutic use ; Recurrence ; Regeneration ; Transcription Factors/antagonists & inhibitors/deficiency/genetics/*metabolism ; Tumor Suppressor Proteins/antagonists & ; inhibitors/deficiency/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2008-08-16
    Description: For a wide variety of microbial pathogens, the outcome of the infection is indeterminate. In some individuals the microbe is cleared, but in others it establishes a chronic infection, and the factors that tip this balance are often unknown. In a widely used model of chronic viral infection, C57BL/6 mice clear the Armstrong strain of lymphocytic choriomeningitis virus (LCMV), but the clone 13 strain persists. Here we show that the Armstrong strain induces a profound lymphopenia at days 1-3 after infection, but the clone 13 strain does not. If we transiently augment lymphopenia by treating the clone-13-infected mice with the drug FTY720 at days 0-2 after infection, the mice successfully clear the infection by day 30. Clearance does not occur when CD4 T cells are absent at the time of treatment, indicating that the drug is not exerting direct antiviral effects. Notably, FTY720 treatment of an already established persistent infection also leads to viral clearance. In both models, FTY720 treatment preserves or augments LCMV-specific CD4 and CD8 T-cell responses, a result that is counter-intuitive because FTY720 is generally regarded as a new immunosuppressive agent. Because FTY720 targets host pathways that are completely evolutionarily conserved, our results may be translatable into new immunotherapies for the treatment of chronic microbial infections in humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Premenko-Lanier, Mary -- Moseley, Nelson B -- Pruett, Sarah T -- Romagnoli, Pablo A -- Altman, John D -- 5F32AI062002/AI/NIAID NIH HHS/ -- AI042373/AI/NIAID NIH HHS/ -- England -- Nature. 2008 Aug 14;454(7206):894-8. doi: 10.1038/nature07199.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Emory Vaccine Center and Department of Microbiology and Immunology, Yerkes National Primate Research Center and Emory University School of Medicine, 954 Gatewood Road, Atlanta, Georgia 30329, USA. mflanie@emory.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18704087" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chronic Disease ; Fingolimod Hydrochloride ; Lymphocytic Choriomeningitis/complications/*drug therapy/*immunology/prevention & ; control ; Lymphocytic choriomeningitis virus/*immunology/physiology ; Lymphopenia/etiology ; Mice ; Mice, Inbred C57BL ; Propylene Glycols/administration & dosage/*pharmacology/*therapeutic use ; Sphingosine/administration & dosage/*analogs & ; derivatives/pharmacology/therapeutic use ; T-Lymphocytes/drug effects/immunology ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2008-05-23
    Description: Dopamine orchestrates motor behaviour and reward-driven learning. Perturbations of dopamine signalling have been implicated in several neurological and psychiatric disorders, and in drug addiction. The actions of dopamine are mediated in part by the regulation of gene expression in the striatum, through mechanisms that are not fully understood. Here we show that drugs of abuse, as well as food reinforcement learning, promote the nuclear accumulation of 32-kDa dopamine-regulated and cyclic-AMP-regulated phosphoprotein (DARPP-32). This accumulation is mediated through a signalling cascade involving dopamine D1 receptors, cAMP-dependent activation of protein phosphatase-2A, dephosphorylation of DARPP-32 at Ser 97 and inhibition of its nuclear export. The nuclear accumulation of DARPP-32, a potent inhibitor of protein phosphatase-1, increases the phosphorylation of histone H3, an important component of nucleosomal response. Mutation of Ser 97 profoundly alters behavioural effects of drugs of abuse and decreases motivation for food, underlining the functional importance of this signalling cascade.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2796210/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2796210/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stipanovich, Alexandre -- Valjent, Emmanuel -- Matamales, Miriam -- Nishi, Akinori -- Ahn, Jung-Hyuck -- Maroteaux, Matthieu -- Bertran-Gonzalez, Jesus -- Brami-Cherrier, Karen -- Enslen, Herve -- Corbille, Anne-Gaelle -- Filhol, Odile -- Nairn, Angus C -- Greengard, Paul -- Herve, Denis -- Girault, Jean-Antoine -- DA10044/DA/NIDA NIH HHS/ -- MH74866/MH/NIMH NIH HHS/ -- P01 DA010044/DA/NIDA NIH HHS/ -- P01 DA010044-020002/DA/NIDA NIH HHS/ -- P01 DA010044-030002/DA/NIDA NIH HHS/ -- P01 DA010044-04/DA/NIDA NIH HHS/ -- P01 DA010044-040002/DA/NIDA NIH HHS/ -- P01 DA010044-05/DA/NIDA NIH HHS/ -- P01 DA010044-050002/DA/NIDA NIH HHS/ -- P01 DA010044-06/DA/NIDA NIH HHS/ -- P01 DA010044-060002/DA/NIDA NIH HHS/ -- P01 DA010044-07/DA/NIDA NIH HHS/ -- P01 DA010044-070002/DA/NIDA NIH HHS/ -- P01 DA010044-08/DA/NIDA NIH HHS/ -- P01 DA010044-080002/DA/NIDA NIH HHS/ -- P01 DA010044-09/DA/NIDA NIH HHS/ -- P01 DA010044-090002/DA/NIDA NIH HHS/ -- P01 DA010044-10/DA/NIDA NIH HHS/ -- P01 DA010044-100002/DA/NIDA NIH HHS/ -- P01 DA010044-11/DA/NIDA NIH HHS/ -- P01 DA010044-110005/DA/NIDA NIH HHS/ -- P01 DA010044-12/DA/NIDA NIH HHS/ -- P01 DA010044-120005/DA/NIDA NIH HHS/ -- P01 DA010044-129002/DA/NIDA NIH HHS/ -- P01 DA010044-13/DA/NIDA NIH HHS/ -- P01 DA010044-130005/DA/NIDA NIH HHS/ -- P01 DA010044-139002/DA/NIDA NIH HHS/ -- P01 DA010044-14/DA/NIDA NIH HHS/ -- P01 DA010044-140005/DA/NIDA NIH HHS/ -- P01 DA010044-149002/DA/NIDA NIH HHS/ -- P01 DA010044-14S1/DA/NIDA NIH HHS/ -- P50 MH074866/MH/NIMH NIH HHS/ -- P50 MH074866-010001/MH/NIMH NIH HHS/ -- P50 MH074866-019001/MH/NIMH NIH HHS/ -- P50 MH074866-020001/MH/NIMH NIH HHS/ -- P50 MH074866-029001/MH/NIMH NIH HHS/ -- P50 MH074866-030001/MH/NIMH NIH HHS/ -- P50 MH074866-039001/MH/NIMH NIH HHS/ -- P50 MH074866-040001/MH/NIMH NIH HHS/ -- P50 MH074866-049001/MH/NIMH NIH HHS/ -- P50 MH074866-050001/MH/NIMH NIH HHS/ -- P50 MH074866-059001/MH/NIMH NIH HHS/ -- England -- Nature. 2008 Jun 12;453(7197):879-84. doi: 10.1038/nature06994. Epub 2008 May 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Inserm, UMR-S 839, 75005 Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18496528" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Nucleus/metabolism ; Cytoplasm/metabolism ; Dopamine/metabolism ; Dopamine and cAMP-Regulated Phosphoprotein 32/chemistry/genetics/*metabolism ; Food ; Histones/metabolism ; Learning ; Male ; Mice ; Mice, Inbred C57BL ; Motivation ; Motor Activity/physiology ; Neostriatum/cytology ; Neurons/metabolism ; Nucleosomes/*metabolism ; Phosphoprotein Phosphatases/antagonists & inhibitors/*metabolism ; Phosphorylation/drug effects ; Phosphoserine/metabolism ; Protein Transport ; Rats ; *Reward ; *Signal Transduction/drug effects ; Substance-Related Disorders
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2008-11-11
    Description: Angiogenesis and the development of a vascular network are required for tumour progression, and they involve the release of angiogenic factors, including vascular endothelial growth factor (VEGF-A), from both malignant and stromal cell types. Infiltration by cells of the myeloid lineage is a hallmark of many tumours, and in many cases the macrophages in these infiltrates express VEGF-A. Here we show that the deletion of inflammatory-cell-derived VEGF-A attenuates the formation of a typical high-density vessel network, thus blocking the angiogenic switch in solid tumours in mice. Vasculature in tumours lacking myeloid-cell-derived VEGF-A was less tortuous, with increased pericyte coverage and decreased vessel length, indicating vascular normalization. In addition, loss of myeloid-derived VEGF-A decreases the phosphorylation of VEGF receptor 2 (VEGFR2) in tumours, even though overall VEGF-A levels in the tumours are unaffected. However, deletion of myeloid-cell VEGF-A resulted in an accelerated tumour progression in multiple subcutaneous isograft models and an autochthonous transgenic model of mammary tumorigenesis, with less overall tumour cell death and decreased tumour hypoxia. Furthermore, loss of myeloid-cell VEGF-A increased the susceptibility of tumours to chemotherapeutic cytotoxicity. This shows that myeloid-derived VEGF-A is essential for the tumorigenic alteration of vasculature and signalling to VEGFR2, and that these changes act to retard, not promote, tumour progression.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3103772/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3103772/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stockmann, Christian -- Doedens, Andrew -- Weidemann, Alexander -- Zhang, Na -- Takeda, Norihiko -- Greenberg, Joshua I -- Cheresh, David A -- Johnson, Randall S -- AI060840/AI/NIAID NIH HHS/ -- CA118165/CA/NCI NIH HHS/ -- CA82515/CA/NCI NIH HHS/ -- R01 CA082515/CA/NCI NIH HHS/ -- R01 CA082515-12/CA/NCI NIH HHS/ -- R01 CA118165/CA/NCI NIH HHS/ -- England -- Nature. 2008 Dec 11;456(7223):814-8. doi: 10.1038/nature07445. Epub 2008 Nov 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Biology Section, Division of Biological Sciences, Moores Cancer Center, University of California, San Diego, San Diego, California 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18997773" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anoxia/genetics ; Antineoplastic Agents, Alkylating/pharmacology ; Carcinoma/blood supply/genetics/*metabolism ; Cytotoxins/pharmacology ; Female ; *Gene Deletion ; Gene Expression Regulation, Neoplastic/drug effects ; Male ; Mammary Neoplasms, Experimental/blood supply/genetics/*metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Myeloid Cells/*metabolism ; Neovascularization, Pathologic/metabolism ; Vascular Endothelial Growth Factor A/*genetics/*metabolism/pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...