ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2005-09-10
    Description: The OSIRIS cameras (optical, spectroscopic, and infrared remote imaging system) onboard the European Space Agency's Rosetta spacecraft observed comet 9P/Tempel 1 for 17 days continuously around the time of NASA's Deep Impact mission. The cyanide-to-water production ratio was slightly enhanced in the impact cloud, compared with that of normal comet activity. Dust particles were flowing outward in the coma at 〉160 meters per second, accelerated by the gas. The slope of the brightness increase showed a dip about 200 seconds after the impact. Dust Afrho values before and long after the impact confirm the slight decrease of cometary activity. The dust-to-water mass ratio was much larger than 1.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Keller, Horst Uwe -- Jorda, Laurent -- Kuppers, Michael -- Gutierrez, Pedro J -- Hviid, Stubbe F -- Knollenberg, Jorg -- Lara, Luisa-Maria -- Sierks, Holger -- Barbieri, Cesare -- Lamy, Philippe -- Rickman, Hans -- Rodrigo, Rafael -- New York, N.Y. -- Science. 2005 Oct 14;310(5746):281-3. Epub 2005 Sep 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck Institut fur Sonnensystemforschung, Max-Planck-Strasse 2, 37191 Katlenburg-Lindau, Germany. keller@mps.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16150976" target="_blank"〉PubMed〈/a〉
    Keywords: Cosmic Dust ; *Meteoroids ; Organic Chemicals/analysis ; Spacecraft ; Spectrophotometry, Infrared ; Spectrum Analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2005-01-18
    Description: In mammals, hair cell loss causes irreversible hearing and balance impairment because hair cells are terminally differentiated and do not regenerate spontaneously. By profiling gene expression in developing mouse vestibular organs, we identified the retinoblastoma protein (pRb) as a candidate regulator of cell cycle exit in hair cells. Differentiated and functional mouse hair cells with a targeted deletion of Rb1 undergo mitosis, divide, and cycle, yet continue to become highly differentiated and functional. Moreover, acute loss of Rb1 in postnatal hair cells caused cell cycle reentry. Manipulation of the pRb pathway may ultimately lead to mammalian hair cell regeneration.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sage, Cyrille -- Huang, Mingqian -- Karimi, Kambiz -- Gutierrez, Gabriel -- Vollrath, Melissa A -- Zhang, Duan-Sun -- Garcia-Anoveros, Jaime -- Hinds, Philip W -- Corwin, Jeffrey T -- Corey, David P -- Chen, Zheng-Yi -- DC-00200/DC/NIDCD NIH HHS/ -- DC-04546/DC/NIDCD NIH HHS/ -- DC-AG20208/DC/NIDCD NIH HHS/ -- New York, N.Y. -- Science. 2005 Feb 18;307(5712):1114-8. Epub 2005 Jan 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Neurology Service, MGH-HMS Center for Nervous System Repair, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15653467" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; Cell Count ; Cell Cycle ; Cell Differentiation ; *Cell Proliferation ; Cell Shape ; Cochlea/cytology/embryology ; Female ; Gene Deletion ; Gene Expression Profiling ; Genes, Retinoblastoma ; Hair Cells, Auditory, Inner/*cytology/*physiology ; Mice ; Mice, Knockout ; Mitosis ; Oligonucleotide Array Sequence Analysis ; Pregnancy ; Pyridinium Compounds/metabolism ; Quaternary Ammonium Compounds/metabolism ; Regeneration ; Retinoblastoma Protein/genetics/*physiology ; Saccule and Utricle/embryology/metabolism ; Stem Cells/cytology/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...