ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus  (6)
  • American Association for the Advancement of Science (AAAS)  (1)
  • Springer Nature  (1)
  • 2015-2019  (6)
  • 2005-2009  (2)
  • 2015  (6)
  • 2005  (2)
  • 1
    Publication Date: 2015-06-20
    Description: Li et al. (Reports, 18 April 2014, p. 292) proposed a unity nitrous acid (HONO) yield for reaction between nitrogen dioxide and the hydroperoxyl-water complex and suggested a substantial overestimation in HONO photolysis contribution to hydroxyl radical budget. Based on airborne observations of all parameters in this chemical system, we have determined an upper-limit HONO yield of 0.03 for the reaction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ye, Chunxiang -- Zhou, Xianliang -- Pu, Dennis -- Stutz, Jochen -- Festa, James -- Spolaor, Max -- Cantrell, Christopher -- Mauldin, Roy L -- Weinheimer, Andrew -- Haggerty, Julie -- New York, N.Y. -- Science. 2015 Jun 19;348(6241):1326. doi: 10.1126/science.aaa1992.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wadsworth Center, New York State Department of Health, Albany, NY, USA. ; Wadsworth Center, New York State Department of Health, Albany, NY, USA. Department of Environmental Health Sciences, State University of New York, Albany, NY, USA. xianliang.zhou@health.ny.gov. ; Department of Environmental Health Sciences, State University of New York, Albany, NY, USA. ; University of California, Los Angeles, CA, USA. ; University of Colorado, Boulder, CO, USA. ; University of Colorado, Boulder, CO, USA. Department of Physics, University of Helsinki, Helsinki, Finland. ; National Center for Atmosphere Research, Earth System Laboratory, Boulder, CO, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26089507" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    Publication Date: 2005-12-15
    Description: We present results of three field campaigns using active longpath DOAS (Differential Optical Absorption Spectroscopy) for the study of reactive halogen species (RHS) BrO, IO, OIO and I2. Two recent field campaigns took place in Spring 2002 in Dagebüll at the German North Sea Coast and in Spring 2003 in Lilia at the French Atlantic Coast of Brittany. In addition, data from a campaign in Mace Head, Ireland in 1998 was partly re-evaluated. During the recent field campaigns volatile halogenated organic compounds (VHOCs) were determined by a capillary gas chromatograph coupled with an electron capture detector and an inductively coupled plasma mass spectrometer (GC/ECD-ICPMS) in air and water. Due to the inhomogeneous distribution of macroalgae at the German North Sea Coast we found a clear connection between elevated levels of VHOCs and the appearance of macroalgae. Extraordinarily high concentrations of several VHOCs, especially CH3I and CH3Br of up to 1830 pptv and 875 pptv, respectively, were observed at the coast of Brittany, demonstrating the outstanding level of bioactivity there. We found CH2I2 at levels of up to 20 pptv, and a clear anti-correlation with the appearance of IO. The IO mixing ratio reached up to 7.7±0.5 ppt(pmol/mol) during the day, in reasonable agreement with model studies designed to represent the meteorological and chemical conditions in Brittany. For the two recent campaigns the DOAS spectra were evaluated for BrO, OIO and I2, but none of these species could be clearly identified (average detection limits around 2 ppt, 3 ppt, 20 ppt, resp., significantly higher in individual cases). Only in the Mace Head spectra evidence was found for the presence of OIO. Since macroalgae under oxidative stress are suggested to be a further source for I2 in the marine boundary layer, we re-analyzed spectra in the 500–600 nm range taken during the 1998 PARFORCE campaign in Mace Head, Ireland, which had not previously been analyzed for I2. We identified molecular iodine above the detection limit (~20 ppt), with peak mixing ratios of 61±12 ppt. Since I2 was undetectable during the Brittany campaign, we suggest that iodine may not be released into the atmosphere by macroalgae in general, but only by a special type of the laminaria species under oxidative stress. Only during periods of extraordinarily low water (spring-tide), the plant is exposed to ambient air and may release gaseous iodine in some way to the atmosphere. The results of our re-analysis of spectra from the PARFORCE campaign in 1998 support this theory. Hence, we feel that we can provide an explanation for the different I2 levels in Brittany and Mace Head.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-10-05
    Description: We collected mercury observations as part of the Nitrogen, Oxidants, Mercury, and Aerosol Distributions, Sources, and Sinks (NOMADSS) aircraft campaign over the southeastern US between 1 June and 15 July 2013. We use the GEOS-Chem chemical transport model to interpret these observations and place new constraints on bromine radical initiated mercury oxidation chemistry in the free troposphere. We find that the model reproduces the observed mean concentration of total atmospheric mercury (THg) (observations: 1.49 ± 0.16 ng m−3, model: 1.51 ± 0.08 ng m−3), as well as the vertical profile of THg. The majority (65 %) of observations of oxidized mercury (Hg(II)) are below the instrument's detection limit (detection limit per flight: 58–228 pg m−3), consistent with model-calculated Hg(II) concentrations of 0–196 ng m−3. However, for observations above the detection limit we find that modeled Hg(II) concentrations are a factor of 3 too low (observations: 212 ± 112 ng m−3, model: 67 ± 44 ng m−3). The highest Hg(II) concentrations, 300–680 pg m−3, were observed in dry (RH 〈 35 %) and clean air masses during two flights over Texas at 5–7 km altitude and off the North Carolina coast at 1–3 km. The GEOS-Chem model, back trajectories and observed chemical tracers for these air masses indicate subsidence and transport from the upper and middle troposphere of the subtropical anticyclones, where fast oxidation of elemental mercury (Hg(0)) to Hg(II) and lack of Hg(II) removal lead to efficient accumulation of Hg(II). We hypothesize that the most likely explanation for the model bias is a systematic underestimate of the Hg(0)+Br reaction rate. We find that sensitivity simulations with tripled bromine radical concentrations or a faster oxidation rate constant for Hg(0)+Br, result in 1.5–2 times higher modeled Hg(II) concentrations and improved agreement with the observations. The modeled tropospheric lifetime of Hg(0) against oxidation to Hg(II) decreases from 5 months in the base simulation to 2.8–1.2 months in our sensitivity simulations. In order to maintain the modeled global burden of THg, we need to increase the in-cloud reduction of Hg(II), thus leading to faster chemical cycling between Hg(0) and Hg(II). Observations and model results for the NOMADSS campaign suggest that the subtropical anticyclones are significant global sources of Hg(II).
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-08-07
    Description: High wintertime ozone levels have been observed in the Uintah Basin, Utah, a sparsely populated rural region with intensive oil and gas operations. The reactive nitrogen budget plays an important role in tropospheric ozone formation. Measurements were taken during three field campaigns in the winters of 2012, 2013, and 2014, which experienced varying climatic conditions. Average concentrations of ozone and total reactive nitrogen were observed to be 2.5 times higher in 2013 than 2012, with 2014 an intermediate year in most respects. However, photochemically active NOx(NO+NO2), remained remarkably similar all three years. Roughly half of the more oxidized forms of nitrogen were composed of nitric acid in 2013, with nighttime nitric acid formation through heterogeneous uptake of N2O5 contributing approximately 6 times more than daytime formation. The nighttime N2O5 lifetime between the high-ozone year 2013 and the low-ozone year 2012 is lower by a factor 2.6, and much of this is due to higher aerosol surface area in the high ozone year of 2013. A box-model simulation supports the importance of nighttime chemistry on the reactive nitrogen budget, showing a large sensitivity of NOx and ozone concentrations to nighttime processes.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2005-08-17
    Description: We present results of three field campaigns using active longpath DOAS (Differential Optical Absorption Spectroscopy) for the study of reactive halogen species (RHS) BrO, IO, OIO and I2. Two recent field campaigns took place in Spring 2002 in Dagebüll at the German North Sea Coast and in Spring 2003 in Lilia at the French Atlantic Coast of Brittany. In addition, data from a campaign in Mace Head, Ireland in 1998 was re-evaluated. During these field campaigns volatile halogenated organic compounds (VHOCs) were determined by GC/ECD-ICPMS in air and water. Due to the spatial distribution of macroalgae at the German North Sea Coast we found a clear connection between elevated levels of VHOCs and the appearance of macroalgae. Extraordinarily high concentrations of several VHOCs, especially CH3I and CH3Br of up to 1830 pptv and 875 pptv, respectively, were observed at the coast of Brittany, demonstrating the outstanding level of bioactivity there. We found CH2I2 at levels of up to 20 pptv, and a clear anti-correlation with the appearance of IO. The IO mixing ratio reached up to 7.7±0.5 ppt(pmol/mol) during the day, in reasonable agreement with model studies designed to represent the meteorological and chemical conditions in Brittany. For the two campaigns the DOAS spectra were evaluated for BrO, OIO and I2, but none of these species could be clearly identified (detection limits around 2 ppt, 3 ppt, 20 ppt, resp.). Only in the Mace Head spectra evidence was found for the presence of OIO. Since macroalgae under oxidative stress are suggested to be a further source for I2 in the marine boundary layer, we re-analyzed spectra in the 500–600 nm range taken during the 1998 PARFORCE campaign in Mace Head, Ireland, which had not previously been analyzed for I2. We identified molecular iodine above the detection limit (~20 ppt), with peak concentrations of 61±12 ppt. Since I2 was undetectable during the Brittany campaign, we suggest that iodine may not be released into the atmosphere by macroalgae in general, but only by a special type of the laminaria species under oxidative stress. Only during periods of extraordinarily low water (spring-tide), is the plant exposed to ambient air and may release gaseous iodine in some way to the atmosphere. The result of our re-analysis of spectra from the PARFORCE campaign in 1998 support this theory. Hence, we feel that we can provide an explanation for the different I2 levels in Brittany and Mace Head.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-11-16
    Description: Atmospheric absorption in the O2 A-band (12 950–13 200 cm−1) offers a unique opportunity to retrieve aerosol extinction profiles from space-borne measurements due to the large dynamic range of optical thickness in that spectral region. Absorptions in strong O2 lines are saturated; therefore, any radiance measured in these lines originates from scattering in the upper part of the atmosphere. Outside of O2 lines, or in weak lines, the atmospheric column absorption is small, and light penetrates to lower atmospheric layers, allowing for the quantification of aerosols and other scatterers near the surface. While the principle of aerosol profile retrieval using O2 A-band absorption from space is well known, a thorough quantification of the information content, i.e., the amount of vertical profile information that can be obtained, and the dependence of the information content on the spectral resolution of the measurements, has not been thoroughly conducted. Here, we use the linearized vector radiative transfer model VLIDORT to perform spectrally resolved simulations of atmospheric radiation in the O2 A-band in the presence of aerosol for four different generic scenarios: Urban, Highly polluted, Elevated layer, and Marine–Arctic. The high-resolution radiances emerging from the top of the atmosphere are degraded to different spectral resolutions, simulating spectrometers with different resolving powers. We use optimal estimation theory to quantify the information content in the aerosol profile retrieval with respect to different aerosol parameters and instrument spectral resolutions. The simulations show that better spectral resolution generally leads to an increase in the total amount of information that can be retrieved, with the number of degrees of freedom (DoF) varying between 0.34–2.11 at low resolution (5 cm−1) to 3.43–5.92 at high resolution (0.05 cm−1) for the four different cases. A particularly strong improvement was found in the retrieval of tropospheric aerosol extinction profiles in the lowest 5 km of the atmosphere. At high spectral resolutions (0.05 cm−1), 1.18–1.7 and 1.31–2.34 DoF can be obtained in the lower (0–2 km) and middle (2–5 km) troposphere, respectively, for the different cases. Consequently a separation of lower and mid tropospheric aerosols is possible, implying the feasibility of identification of elevated biomass burning aerosol plumes (Elevated layer scenario). We find that higher single scattering albedo (SSA) allows for the retrieval of more aerosol information. However, the dependence on SSA is weaker at higher spectral resolutions. The Marine (surface albedo 0.05) and Arctic (surface albedo 0.9) cases show that the dependence of DoF on the surface albedo decreases with higher resolution. While at low resolution (5 cm−1) the DoF is 1 for the Marine case and 0.34 for the Arctic case, the DoF considerably increase at 0.05 cm−1 resolution to 3.8 and 3.4, respectively. In the Arctic case this is an improvement of a factor of 10. The simulations also reveal a moderate dependence of information content on the integration time of the measurements, i.e., the noise of the spectra. However, our results indicate that a larger increase in DoF is obtained by an increase in spectral resolution despite lower signal-to-noise ratios.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-10-29
    Description: We describe a two-channel broadband cavity enhanced absorption spectrometer (BBCEAS) for aircraft measurements of glyoxal (CHOCHO), methylglyoxal (CH3COCHO), nitrous acid (HONO), nitrogen dioxide (NO2), and water (H2O). The instrument spans 361–389 and 438–468 nm, using two light emitting diodes (LEDs) and a grating spectrometer with a charge-coupled device (CCD) detector. Robust performance is achieved using a custom optical mounting system, high power LEDs with electronic on/off modulation, state-of-the-art cavity mirrors, and materials that minimize analyte surface losses. We have successfully deployed this instrument during two aircraft and two ground-based field campaigns to date. The demonstrated precision (2σ) for retrievals of CHOCHO, HONO and NO2 are 34, 350 and 80 pptv in 5 s. The accuracy is 5.8, 9.0 and 5.0 % limited mainly by the available absorption cross sections.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...