ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Aerodynamics
  • GENERAL
  • Life and Medical Sciences
  • 2000-2004  (16)
  • 1955-1959
  • 2003  (16)
  • 1
    Publication Date: 2019-07-10
    Description: Experimental results from testing of a novel supersonic inlet model in NASA Glenn Research Center's 10- by 10-foot supersonic wind tunnel are presented. The patented inlet concept, called Two-Stage Supersonic Inlet (TSSI), incorporates a large cavity, or throat slot, in the supersonic diffuser intended to enhance the stability of the normal shock. The present embodiment of the concept is a bifurcated twin-duct) design. During the course of testing an unusual 'semi-started' mode of operation was encountered. The inlet was able to spill up to 30 percent of the captured airstream without fully expelling the normal shock. In this mode, the total pressure recovery dropped approximately 6 percent without increasing steady-state distortion. Dynamic instrumentation at the cowl lip station indicates the semi-start mode may be a series of unstart/restart cycles with frequency ranging from 0.2 to 20 Hz. Engine face total pressure measurements indicate a modest impact due to this event. However, since the current test article does not have a representative subsonic diffuser (and is in fact separated), it is unclear how this mode of operation would effect an engine. Further investigation of this phenomenon is required before it is fully understood. Prior testing of the TSSI concept allowed extension of fully started inlet operation to regions of significantly reduced supply flow without reducing recovery. The test article was a smaller scale than the present test and was a single duct design. In the present test, the expanded range of stable operation with high recovery was not realized.
    Keywords: Aerodynamics
    Type: NASA/CR-2003-212313 , NAS 1.26:212313 , E-13902
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-11
    Description: In an effort to discover the causes for disagreement between previous two-dimensional (2-D) computations and nominally 2-D experiment for flow over the three-element McDonnell Douglas 30P-30N airfoil configuration at high lift, a combined experimental/CFD investigation is described. The experiment explores several different side-wall boundary layer control venting patterns, documents venting mass flow rates, and looks at corner surface flow patterns. The experimental angle of attack at maximum lift is found to be sensitive to the side-wall venting pattern: a particular pattern increases the angle of attack at maximum lift by at least 2 deg. A significant amount of spanwise pressure variation is present at angles of attack near maximum lift. A CFD study using three-dimensional (3-D) structured-grid computations, which includes the modeling of side-wall venting, is employed to investigate 3-D effects on the flow. Side-wall suction strength is found to affect the angle at which maximum lift is predicted. Maximum lift in the CFD is shown to be limited by the growth of an off-body corner flow vortex and consequent increase in spanwise pressure variation and decrease in circulation. The 3-D computations with and without wall venting predict similar trends to experiment at low angles of attack, but either stall too early or else overpredict lift levels near maximum lift by as much as 5%. Unstructured-grid computations demonstrate that mounting brackets lower the lift levels near maximum lift conditions.
    Keywords: Aerodynamics
    Type: Computers and Fluids (ISSN 0045-7930); Volume 32; 631-657
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Trailing Ballute Aerocapture offers the potential to obtain orbit insertion around a planetary body at a fraction of the mass of traditional methods. This allows for lower costs for launch, faster flight times and additional mass available for science payloads. The technique involves an inflated ballute (balloon-parachute) that provides aerodynamic drag area for use in the atmosphere of a planetary body to provide for orbit insertion in a relatively benign heating environment. To account for atmospheric, navigation and other uncertainties, the ballute is oversized and detached once the desired velocity change (Delta V) has been achieved. Analysis and trades have been performed for the purpose of assessing the feasibility of the technique including aerophysics, material assessments, inflation system and deployment sequence and dynamics, configuration trades, ballute separation and trajectory analysis. Outlined is the technology development required for advancing the technique to a level that would allow it to be viable for use in space exploration missions.
    Keywords: Aerodynamics
    Type: AIAA Paper 2003-4655 , AIAA Joint Propulsion Conference and Exhibit 2003; Jul 20, 2003 - Jul 23, 2003; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: A generic spinning missile with dithering canards is used to demonstrate the utility of an overset structured grid approach for simulating the aerodynamics of rolling airframe missile systems. The approach is used to generate a modest aerodynamic database for the generic missile. The database is populated with solutions to the Euler and Navier-Stokes equations. It is used to evaluate grid resolution requirements for accurate prediction of instantaneous missile loads and the relative aerodynamic significance of angle-of-attack, canard pitching sequence, viscous effects, and roll-rate effects. A novel analytical method for inter- and extrapolation of database results is also given.
    Keywords: Aerodynamics
    Type: 20th AIAA Applied Aerodynamics Conference; Jun 24, 2002 - Jun 26, 2002; Saint Louis, MO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: A new high Reynolds number test capability for boundary layer ingesting inlets has been developed for the NASA Langley Research Center 0.3-Meter Transonic Cryogenic Tunnel. Using this new capability, an experimental investigation of four S-duct inlet configurations with large amounts of boundary layer ingestion (nominal boundary layer thickness of about 40% of inlet height) was conducted at realistic operating conditions (high subsonic Mach numbers and full-scale Reynolds numbers). The objectives of this investigation were to 1) develop a new high Reynolds number, boundary-layer ingesting inlet test capability, 2) evaluate the performance of several boundary layer ingesting S-duct inlets, 3) provide a database for CFD tool validation, and 4) provide a baseline inlet for future inlet flow-control studies. Tests were conducted at Mach numbers from 0.25 to 0.83, Reynolds numbers (based on duct exit diameter) from 5.1 million to a fullscale value of 13.9 million, and inlet mass-flow ratios from 0.39 to 1.58 depending on Mach number. Results of this investigation indicate that inlet pressure recovery generally decreased and inlet distortion generally increased with increasing Mach number. Except at low Mach numbers, increasing inlet mass-flow increased pressure recovery and increased distortion. Increasing the amount of boundary layer ingestion (by decreasing inlet throat height and increasing inlet throat width) or ingesting a boundary layer with a distorted profile decreased pressure recovery and increased distortion. Finally, increasing Reynolds number had almost no effect on inlet distortion but increased inlet recovery by about one-half percent at a Mach number near cruise.
    Keywords: Aerodynamics
    Type: Paper 38 , Symposium on Vehicle Propulsion Integration; Oct 06, 2003 - Oct 09, 2003; Warsaw; Poland
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: A method for aerodynamic shape optimization based on an evolutionary algorithm approach is presented and demonstrated. Results are presented for a number of model problems to access the effect of algorithm parameters on convergence efficiency and reliability. A transonic viscous airfoil optimization problem, both single and two-objective variations, is used as the basis for a preliminary comparison with an adjoint-gradient optimizer. The evolutionary algorithm is coupled with a transonic full potential flow solver and is used to optimize the inviscid flow about transonic wings including multi-objective and multi-discipline solutions that lead to the generation of pareto fronts. The results indicate that the evolutionary algorithm approach is easy to implement, flexible in application and extremely reliable.
    Keywords: Aerodynamics
    Type: Aerodynamic Shape Optimization Using Evolutionary Algorithms: Seminar; Mar 03, 2003; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-10
    Description: Reduction of noise generated by turbulent flow past the trailing-edge of a lifting surface is a challenge in many aeronautical and naval applications. Numerical predictions of trailing-edge noise necessitate the use of advanced simulation techniques such as large-eddy simulation (LES) in order to capture a wide range of turbulence scales which are the source of broadband noise. Aeroacoustic calculations of the flow over a model airfoil trailing edge using LES and aeroacoustic theory have been presented in Wang and Moin and were shown to agree favorably with experiments. The goal of the present work is to apply shape optimization to the trailing edge flow previously studied, in order to control aerodynamic noise.
    Keywords: Aerodynamics
    Type: Center for Turbulence Research Annual Research Briefs 2003; 399-412
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Aeronautics research has seriously declined partly because of the perception that it is a mature science and only incremental improvements are possible. Recent aeronautics roadmapping activities at NASA Langley paint a different picture of the future. Breakthroughs are still felt to be possible if we expand the current design space of today's vehicles and optimize the airspace and vehicles as a system. The paper describes some of the challenges that the aircraft and airline industry face. These challenges include political, technical and environmental issues. Examples of the opportunities and technologies that could provide a different vision for the future are discussed.
    Keywords: Aerodynamics
    Type: AIAA Paper 2003-3785 , 21st Applied Aerodynamics Conference; Jun 23, 2003 - Jun 26, 2003; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: A three-dimensional viscous inverse method is extended to allow blading design with full interaction between the prescribed pressure-loading distribution and a specified transpiration scheme. Transpiration on blade surfaces and endwalls is implemented as inflow/outflow boundary conditions, and the basic modifications to the method are outlined. This paper focuses on a discussion concerning an application of the method to the design and analysis of a supersonic rotor with aspiration. Results show that an optimum combination of pressure-loading tailoring with surface aspiration can lead to a minimization of the amount of sucked flow required for a net performance improvement at design and off-design operations.
    Keywords: Aerodynamics
    Type: NASA/TM-2003-212212 , NAS 1.15:212212 , E-13834 , ARL-TR-2957 , GT-2003-38492 , Turbo Expo 2003; Jun 16, 2003 - Jun 19, 2003; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: This report is a summary of the work performed by Georgia Tech Research Institute (GTRI) under NASA Langley Grant NAG-1-2146, which was awarded as a part of NASA's Breakthrough Innovative Technologies (BIT) initiative. This was a three-year program, with a one-year no-cost extension. Each year's study has been an integrated effort consisting of computational fluid dynamics, experimental aerodynamics, and detailed noise and flow measurements. Year I effort examined the feasibility of reducing airframe noise by replacing the conventional wing systems with a Circulation Control Wing (CCW), where steady blowing was used through the trailing edge of the wing over a Coanda surface. It was shown that the wing lift increases with CCW blowing and indeed for the same lift, a CCW wing was shown to produce less noise. Year 2 effort dealt with a similar study on the role of pulsed blowing on airframe noise. The main objective of this portion of the study was to assess whether pulse blowing from the trailing edge of a CCW resulted in more, less, or the same amount of radiated noise to the farfield. Results show that a reduction in farfield noise of up to 5 dB is measured when pulse flow is compared with steady flow for an equivalent lift configuration. This reduction is in the spectral region associated with the trailing edge jet noise. This result is due to the unique advantage that pulsed flow has over steady flow. For a range of frequencies, more lift is experienced with the same mass flow as the steady case. Thus, for an equivalent lift and slot height, the pulsed system can operate at lower jet velocities, and hence lower jet noise. The computational analysis showed that for a given time-averaged mass flow rate, pulsed jets give a higher value of C(sub l) and a higher L/D than equivalent steady jets. This benefit is attributable to higher instantaneous jet velocities, and higher instantaneous C(sub mu) values for the pulsed jet. Pulsed jet benefits increase at higher frequencies. However, these advantages are somewhat offset by the unsteadiness in the loads, which will cause structural vibrations and fatigue. Additional studies must be done, perhaps with multiple jets on the upper and lower surfaces, to smooth out the fluctuations in lift while retaining the benefits. The rest of the effort was devoted to examining ways of reducing flap edge noise by blowing air through a Coanda nozzle over a rounded tip of the flap. In this case, we were successful in moving the tip vortex away from the tip, but the device producing the blowing was noisy and we were unable to examine the noise benefits, although we believe that the movement of the tip vortex far from the tip should provide noise benefits. It should be noted that in an effort to understand the fluid dynamics and the aeroacoustics of a jet blowing over a Coanda surface, we also carried out a very extensive study of the high aspect ratio slot jets. A first-ever set of far-field noise spectra were measured for jets exhausting from slots with aspect ratios in the range 100 to 3000. Parallel measurements of velocity profiles, length scales and convection velocities were measured to understand the noise generation of high aspect ratio jets. Attempts were also made to develop jet noise prediction schemes for such jets. Much of the work done under this effort has been described in five conference papers and two doctoral theses. The first year s work on the use of steady blowing was described in two AIAA papers presented at the 2001 AIAA Aerospace Sciences Meeting in Reno. Subsequent work was presented at the 9th AIMCEAS Aeroacoustics Conference and Exhibit held at Hilton Head May 12-13. Another paper is to be presented at the 2004 AIAA Aerospace Sciences Meeting in Reno in January 2004. All six papers are included with this report as Appendices. The bulk of the experimental work done in an effort to produce a pulsed flow that is free of upstream noise is also attached as an Appendix.
    Keywords: Aerodynamics
    Type: GTRI-A5928/2003-1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...