ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Description: Our mission is to bring together the mutual elements of research, industry, and training in the field of cryogenics to advance technology development for the spaceports of the future. Successful technology and productive collaboration comes from these three ingredients working together in a triangle of interaction.
    Keywords: Space Transportation and Safety
    Type: Space Transportation Technology Workshop: Propulsion Research and Technology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-29
    Description: Scale is an "innate" concept in geographic information systems. It is recognized as something that is intrinsic to the capture, storage, manipulation, analysis, modeling, and output of space and time data within a GIS purview, yet the relative meaning and ramifications of scaling spatial and temporal data from this perspective remain enigmatic. As GISs become more sophisticated as a product of more robust software and more powerful computer systems, there is an urgent need to examine the issue of scale, and its relationship to the whole body of spatiotemporal data, as imparted in GISs. Scale is fundamental to the characterization of geo-spatial data as represented in GISs, but we have relatively little insight on how to measure the effects of scale in representing data that are acquired in different formats and exist in varying spatial, temporal and radiometric configurations. Moreover, the complexities associated with the integration of multiscaled data sets in a multitude of formats are exacerbated by the confusion of what the term "scale" is from a multidisciplinary perspective. "Scale" takes on significantly different meanings depending upon one's disciplinary background and spatial perspective which lead to substantial confusion in the input, manipulation, analysis, and output operations. Hence, we must begin to look at the universality of scale and begin to develop the theory, methods, and techniques necessary to advance knowledge on the "Science of Scale' across all disciplines that use GISs.
    Keywords: Documentation and Information Science
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-29
    Description: Modern computational and experimental tools for aerodynamics and propulsion applications have matured to a stage where they can provide substantial insight into engineering processes involving fluid flows, and can be fruitfully utilized to help improve the design of practical devices. In particular, rapid and continuous development in aerospace engineering demands that new design concepts be regularly proposed to meet goals for increased performance, robustness and safety while concurrently decreasing cost. To date, the majority of the effort in design optimization of fluid dynamics has relied on gradient-based search algorithms. Global optimization methods can utilize the information collected from various sources and by different tools. These methods offer multi-criterion optimization, handle the existence of multiple design points and trade-offs via insight into the entire design space, can easily perform tasks in parallel, and are often effective in filtering the noise intrinsic to numerical and experimental data. However, a successful application of the global optimization method needs to address issues related to data requirements with an increase in the number of design variables, and methods for predicting the model performance. In this article, we review recent progress made in establishing suitable global optimization techniques employing neural network and polynomial-based response surface methodologies. Issues addressed include techniques for construction of the response surface, design of experiment techniques for supplying information in an economical manner, optimization procedures and multi-level techniques, and assessment of relative performance between polynomials and neural networks. Examples drawn from wing aerodynamics, turbulent diffuser flows, gas-gas injectors, and supersonic turbines are employed to help demonstrate the issues involved in an engineering design context. Both the usefulness of the existing knowledge to aid current design practices and the need for future research are identified.
    Keywords: Spacecraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-05
    Description: Efforts to reduce viscous drag on airfoils could results in a considerable saving for the operation of flight vehicles including those of space transportation. This reduction of viscous drag effort requires measurement and active control of boundary layer flow property on an airfoil. Measurement of viscous drag of the boundary layer flow over an airfoil with minimal flow disturbance is achievable with newly developed MEMS sensor clusters. These sensor clusters provide information that can be used to actively control actuators to obtain desired flow properties or design a vehicle to satisfy particular boundary layer flow criteria. A series of MEMS sensor clusters has been developed with a data acquisition and control module for local measurements of shear stress, pressure, and temperature on an airfoil. The sensor cluster consists of two shear stress sensors, two pressure sensors, and two temperature sensors on a surface area of 1.24 mm x 1.86 mm. Each sensor is 300 microns square and is placed on a flexible polyimide sheet. The shear stress sensor is a polysilicon hot-film resistor, which is insulated by a vacuum cavity of 200 x 200 x 2 microns. The pressure sensors are silicon piezoresistive type, and the temperature sensors are also hot film polysilicon resistors. The total size of the cluster including sensors and electrical leads is 1 Omm x 1 Omm x 0.1 mm. A typical sensitivity of shear stress sensor is 150 mV/Pascal, the pressure sensors are an absolute type with a measurement range from 9 to 36 psia with 0.8mV/V/psi sensitivity, and the temperature sensors have a measurement resolution of 0.1 degree C. The sensor clusters are interfaced to a data acquisition and control module that consists of two custom ASICs (Application Specific Integrated Circuits) and a micro-controller. The data acquisition and control module transfers data to a host PC that configures and controls a total of three sensor clusters. Functionality of the entire system has been tested in the laboratory, and preliminary test results are presented.
    Keywords: Aerodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-17
    Description: Each year, thousands of lightning electric field disturbances are recorded and archived by the ground-based field mill (FM) network at the NASA Kennedy Space Center (KSC) and USAF Eastern Range (ER). The FM network has a range of several tens of kilometers, and a digital accuracy of 4 V/m. It has provided years of continuous lightning warning surveillance to KSC-ER space vehicle launch operations, and has undergone one major hardware upgrade since its inception in the early 1970s. Additional KSC lightning warning data is derived from a multistation radio time-of-arrival system called Lightning Detection and Ranging (LDAR). This system provides the location and space-time mapping of individual lightning channels (for both cloud and ground flashes). Additional lightning information for the KSC region is available from the National Lightning Detection Network (NLDN) and a 5-station local magnetic direction finder network. In this study, all of the above mentioned data are used to ground-validate data derived from the Lightning Imaging Sensor (LIS) onboard the Tropical Rainfall Measuring Mission (TRMM). The FM network can be used to retrieve the charges deposited in a lightning flash, provided the flash is within a few kilometers of the FM Network. Although it is rare to obtain a TRMM overpass of thunderstorms hat occur this close to the FM network, seven such storms have been found and examined in this study. We compare the times and locations of LIS optical pulses with the spatial-temporal character of the FM, LDAR, and magnetic direction finder data. We also inter-compare LIS optical pulse amplitude data with FM-derived charge magnitudes, number of LDAR radio sources, and peak current values from magnetic direction finder data. Generally speaking, LIS lightning locations and times agree favorably with the KSC ground-based systems for most cases, but little correlation appears to exist between optical pulse amplitude and any of charge, # LDAR sources, peak current), owing possibly to the effects of source complexity and/or cloud multiple scattering.
    Keywords: Meteorology and Climatology
    Type: 2000 Fall Meeting; Dec 15, 2000 - Dec 19, 2000; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-17
    Description: The high sensitivity, accuracy and pointing stability of the TRMM/LIS allows analysis of not only tropical bulk lightning production, but of storm cell-based statistics. Issues associated with per-storm flash rate identification are presented, including minimum detectable flash rate, 'unbiasing' the low end of observed storm flash rate spectra, and cell identification. Global lightning bulk composites are disaggregated into contributions from storm frequency of occurrence and per-storm flash rate, with the former dominating the global spatial distribution. Local examination of these fields reveals offsets between peaks in flashing storm occurrence and peaks in storm flash rate, often related to geographic effects and diurnal storm evolution. The correlation of storm-level statistics with theoretical measures of meso/large scale coupling (e.g., the gross moist stability of the tropical atmosphere as calculated by Neelin et al) is shown.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-17
    Description: Quantitative analyses of remote sensing measurements of aerosols, clouds, precipitation, and particulate surfaces as well as computations of the Earth's radiation balance require detailed understanding of the interaction of small particles with light and other electromagnetic radiation. The convenient availability of the Lorenz-Mie theory has led to a widespread practice of treating all particles as if they were spheres. However, many natural and anthropogenic particles have nonspherical shapes, and the accumulated knowledge suggests that their scattering and radiative properties can be dramatically different from those of equivalent spheres. This presentation will summarize the recent significant progress achieved in the area of electromagnetic scattering by nonspherical particles and outline major problems that still await solution. The talk will cover the following specific topics: (1) comparison of most widely used exact and approximate theoretical techniques; (2) outline of laboratory and field measurement techniques; (3) compare theory and experiment; (4) need for a statistical approach in dealing with natural particles; (5) remote sensing and radiative transfer applications; and (6) major unsolved problems.
    Keywords: Earth Resources and Remote Sensing
    Type: IRS 2000; Jul 24, 2000 - Jul 29, 2000; Saint Petersburg; Russia
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-17
    Description: We have used airborne multispectral thermal infrared (TIR) remote sensing data collected at a high spatial resolution (i.e., 10m) over several cities in the United States to study thermal energy characteristics of the urban landscape. These TIR data provide a unique opportunity to quantify thermal responses from discrete surfaces typical of the urban landscape and to identify both the spatial arrangement and patterns of thermal processes across the city. The information obtained from these data is critical to understanding how urban surfaces drive or force development of the Urban Heat Island (UHI) effect, which exists as a dome of elevated air temperatures that presides over cities in contrast to surrounding non-urbanized areas. The UHI is most pronounced in the summertime where urban surfaces, such as rooftops and pavement, store solar radiation throughout the day, and release this stored energy slowly after sunset creating air temperatures over the city that are in excess of 2-4'C warmer in contrast with non-urban or rural air temperatures. The UHI can also exist as a daytime phenomenon with surface temperatures in downtown areas of cities exceeding 38'C. The implications of the UHI are significant, particularly as an additive source of thermal energy input that exacerbates the overall production of ground level ozone over cities. We have used the Airborne Thermal and Land Applications Sensor (ATLAS), flown onboard a Lear 23 jet aircraft from the NASA Stennis Space Center, to acquire high spatial resolution multispectral TIR data (i.e., 6 bandwidths between 8.2-12.2 (um) over Huntsville, Alabama, Atlanta, Georgia, Baton Rouge, Louisiana, Salt Lake City, Utah, and Sacramento, California. These TIR data have been used to produce maps and other products, showing the spatial distribution of heating and cooling patterns over these cities to better understand how the morphology of the urban landscape affects development of the UHI. In turn, these data have been used by government officials, urban planners, and other decision-makers, to make more informed decisions on how to mitigate the UHI and its subsequent impacts.
    Keywords: Earth Resources and Remote Sensing
    Type: Multi/Hyperspectral Sensors, Measurements, Modeling and Simulation; Nov 07, 2000 - Nov 09, 2000; Redstone Arsenal, AL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-17
    Description: During the TRMM-LBA (Tropical Rainfall Measuring Mission - Large-Scale Biosphere-Atmosphere Experiment in Amazonia) field campaign of January - February 1999, EDOP (ER-2 Doppler Radar), AMPR (Advanced Microwave Precipitation Radiometer), and MIR (Millimeter-wave Imaging Radiometer) on board the NASA ER-2 aircraft made a number of flights over the same Amazon area for studies of precipitation signatures. It is generally perceived that AMPR, with measurements at the frequencies of 10.7, 19.35, 37.0, and 85 GHz, is not sensitive to precipitation over land; a possible exception is detection through electromagnetic wave scattering at 85 GHz by frozen hydrometeors aloft above the freezing level. Analysis of the combined data sets from these instruments shows that, in the Amazon highly forested areas where the surface emissivity is high and uniform, direct detection of rain by a radiometer at frequencies less than or equal to 37 GHz is possible. The detection of rain is reflected by a depression in brightness temperature, which amounts to as much as 20 K at 19.35 GHz. Measurements at higher frequencies by the MIR help delineate the regions of scattering signatures above the freezing level. Implications of the combined wideband measurements from AMPR and MIR will be discussed.
    Keywords: Meteorology and Climatology
    Type: Dec 15, 2000 - Dec 19, 2000; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-17
    Description: A set of global, monthly rainfall products has been intercompared to understand the quality and utility of the estimates. The products include 25 observational (satellite-based), four model and two climatological products. The results of the intercomparison indicate a very large range (factor of two or three) of values when all products are considered. The range of values is reduced considerably when the set of observational products is limited to those considered quasi-standard. The model products do significantly poorer in the tropics, but are competitive with satellite-based fields in mid-latitudes over land. Over ocean, products are compared to frequency of precipitation from ship observations. The evaluation of the observational products point to merged data products (including rain gauge information) as providing the overall best results.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...