ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Aircraft Design, Testing and Performance
  • 2010-2014
  • 1995-1999  (9)
  • 1950-1954
  • 1940-1944
  • 1999  (9)
Collection
Years
  • 2010-2014
  • 1995-1999  (9)
  • 1950-1954
  • 1940-1944
Year
  • 1
    Publication Date: 2019-07-13
    Description: NASA's Hyper-X Research Vehicle will provide a unique opportunity to obtain data on an operational airframe integrated scramjet propulsion system at true flight conditions. The airframe integrated nature of the scramjet engine with the Hyper-X vehicle results in a strong coupling effect between the propulsion system operation and the airframe s basic aerodynamic characteristics. Comments on general airframe integrated scramjet propulsion system effects on vehicle aerodynamic performance, stability, and control are provided, followed by examples specific to the Hyper-X research vehicle. An overview is provided of the current activities associated with the development of the Hyper-X aerodynamic database, including wind tunnel test activities and parallel CFD analysis efforts. A brief summary of the Hyper-X aerodynamic characteristics is provided, including the direct and indirect effects of the airframe integrated scramjet propulsion system operation on the basic airframe stability and control characteristics.
    Keywords: Aircraft Design, Testing and Performance
    Type: ISOABE-99-7215 , XIV ISOABE; Sep 05, 1999 - Sep 10, 1999; Florence; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-10
    Description: The goal of the Hyper-X program is to demonstrate and validate technology for design and performance predictions of hypersonic aircraft with an airframe-integrated supersonic-combustion ramjet propulsion system. Accomplishing this goal requires flight demonstration of a hydrogen-fueled scramjet powered hypersonic aircraft. A key enabling technology for this flight demonstration is flight controls. Closed-loop flight control is required to enable a successful stage separation, to achieve and maintain the design condition during the engine test, and to provide a controlled descent. Before the contract award, NASA developed preliminary flight control laws for the Hyper-X to evaluate the feasibility of the proposed scramjet test sequence and descent trajectory. After the contract award, a Boeing/NASA partnership worked to develop the current control laws. This paper presents a description of the Hyper-X Research Vehicle control law architectures with performance and robustness analyses. Assessments of simulated flight trajectories and stability margin analyses demonstrate that these control laws meet the flight test requirements.
    Keywords: Aircraft Design, Testing and Performance
    Type: AIAA Paper 99-4124
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-10
    Description: This study provides a preliminary assessment of the potential benefits of applying unsteady separation control to transport aircraft. Estimates are given for some of the costs associated with a specific application to high-lift systems. High-leverage areas for future research were identified during the course of the study. The study was conducted in three phases. Phase 1 consisted of a coarse screening of potential applications within the aerodynamics discipline. Potential benefits were identified and in some cases quantified in a preliminary way. Phase 2 concentrated on the application to the wing high-lift system, deemed to have the greatest potential benefit for commercial transports. A team of experts, including other disciplines (i.e. hydraulic, mechanical, and electrical systems, structures, configurations, manufacturing, and finance), assessed the feasibility, benefits, and costs to arrive at estimates of net benefits. In both phases of the study, areas of concern and areas for future research were identified. In phase 3 of this study, the high-leverage areas for future research were prioritized as a guide for future efforts aimed at the application of active flow control to commercial transport aircraft.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA/CR-1999-209338 , NAS 1.26:209338
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-02
    Description: Experimental and analysis results for a curved, stiffened aluminum fuselage panel tested in a combined loads test machine with combined internal pressure, axial compression, and torsional shear loads are described. The experimental and analytical strain results for the panel with and without discrete source damage are presented. The effect of notch tip geometry on crack growth predictions is addressed. The crack growth trajectory predictions for the panel are presented for the applied loading conditions at failure.
    Keywords: Aircraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: A supersonic coaxial jet facility has been designed to provide experimental data suitable for the validation of CFD codes used to analyze high-speed propulsion flows. The center jet is of a light gas and the coflow jet is of air, and the mixing layer between them is compressible. Various methods have been employed in characterizing the jet flow field, including schlieren visualization, pitot, total temperature and gas sampling probe surveying, and RELIEF velocimetry. A Navier-Stokes code has been used to calculate the nozzle flow field and the results compared to the experiment.
    Keywords: Aircraft Design, Testing and Performance
    Type: AIAA Paper 99-3588 , 30th AIAA Fluid Dynamics Conference; Jun 28, 1999 - Jul 01, 1999; Norfolk, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Active Flow Control Programs at NASA, the U.S. Air Force, and DARPA have been initiated with the goals of obtaining revolutionary advances in aerodynamic performance and maneuvering compared to conventional approaches. These programs envision the use of actuators, sensors, and controllers on applications such as aircraft wings/tails, engine nacelles, internal ducts, nozzles, projectiles, weapons bays, and hydrodynamic vehicles. Anticipated benefits of flow control include reduced weight, part count, and operating cost and reduced fuel burn (and emissions), noise and enhanced safety if the sensors serve a dual role of flow control and health monitoring. To get from the bench-top or laboratory test to adaptive distributed control systems on realistic applications, reliable validated design tools are needed in addition to sub- and large-scale wind-tunnel and flight experiments. This paper will focus on the development of tools for active flow control applications.
    Keywords: Aircraft Design, Testing and Performance
    Type: AIAA Paper 99-3575 , 30th AIAA Fluid Dynamics Conference; Jun 28, 1999 - Jul 01, 1999; Norfolk, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-27
    Description: This monograph contains the edited transcript of a symposium marking the 50th anniversary of this aircraft's first flight in 1948. A sister aircraft to the more well-known rocket-powered X-1, the jet-powered D-558 gave NACA researchers many useful insights about the transonic speed range. Several of the original aircraft pilots present accounts of their involvement in the program. Appendices include design specifications for the Douglas D-558-1 and -2 as well as declassified documentation and memoranda (1949-1957) regarding the progress of the program.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA/SP-1999-4222 , NAS 1.21:4222
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-10
    Description: At high subsonic flight speeds, large flexible aircraft begin to encounter unsteady airloads which are not predicted by most currently available aerodynamic analysis and design methods. With increasing speed and the development of transonic flow and shocks, viscous effects quickly become very important, and flow separation can occur. The Northrop Grumman USAF B-2 Bomber encountered a nonlinear aeroelastic Residual Pitch Oscillation (RPO) under these conditions. Simulation studies were performed with the Computational Aeroelasticity Program-Transonic Small Disturbance, Viscous (CAPTSDv) computer program to evaluate its ability to predict these nonlinear aeroelastic responses. Open and closed loop simulations were performed to assess the participation of the flight control system. Control, system actuator hysteresis characteristics were modeled and found to be a significant participant in the RPO phenomenon. Simulations were also performed for varying Mach numbers and altitudes to establish the stability boundaries and compare with flight test data. These CAPTSDv simulations compared well with flight data and revealed many potential further modeling enhancements.
    Keywords: Aircraft Design, Testing and Performance
    Type: CEAS/AIAA/ICASE/NASA Langley International Forum on Aeroelasticity and Structural Dynamics 1999; Pt. 2; 511-522; NASA/CP-1999-209136/PT2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-18
    Description: The Center/TRACON Automation System (CTAS), under development at NASA Ames Research Center, is designed to assist controllers with the management and control of air traffic transitioning to/from congested airspace. This paper focuses on the transition from the en route environment, to high-density terminal airspace, under a time-based arrival-metering constraint. Two flight tests were conducted at the Denver Air Route Traffic Control Center (ARTCC) to study trajectory-prediction accuracy, the key to accurate Decision Support Tool advisories such as conflict detection/resolution and fuel-efficient metering conformance. In collaboration with NASA Langley Research Center, these test were part of an overall effort to research systems and procedures for the integration of CTAS and flight management systems (FMS). The Langley Transport Systems Research Vehicle Boeing 737 airplane flew a combined total of 58 cruise-arrival trajectory runs while following CTAS clearance advisories. Actual trajectories of the airplane were compared to CTAS and FMS predictions to measure trajectory-prediction accuracy and identify the primary sources of error for both. The research airplane was used to evaluate several levels of cockpit automation ranging from conventional avionics to a performance-based vertical navigation (VNAV) FMS. Trajectory prediction accuracy was analyzed with respect to both ARTCC radar tracking and GPS-based aircraft measurements. This paper presents detailed results describing the trajectory accuracy and error sources. Although differences were found in both accuracy and error sources, CTAS accuracy was comparable to the FMS in terms of both meter-fix arrival-time performance (in support of metering) and 4D-trajectory prediction (key to conflict prediction). Overall arrival time errors (mean plus standard deviation) were measured to be approximately 24 seconds during the first flight test (23 runs) and 15 seconds during the second flight test (25 runs). The major source of error during these tests was found to be the predicted winds aloft used by CTAS. Position and velocity estimates of the airplane provided to CTAS by the ATC Host radar tracker were found to be a relatively insignificant error source for the trajectory conditions evaluated. Airplane performance modeling errors within CTAS were found to not significantly affect arrival time errors when the constrained descent procedures were used. The most significant effect related to the flight guidance was observed to be the cross-track and turn-overshoot errors associated with conventional VOR guidance. Lateral navigation (LNAV) guidance significantly reduced both the cross-track and turn-overshoot error. Pilot procedures and VNAV guidance were found to significantly reduce the vertical profile errors associated with atmospheric and aircraft performance model errors.
    Keywords: Aircraft Design, Testing and Performance
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...