ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (20)
  • Aircraft Design, Testing and Performance
  • Female
  • Spacecraft Propulsion and Power
  • 2010-2014
  • 1995-1999  (20)
  • 1965-1969
  • 1950-1954
  • 1940-1944
  • 1997  (20)
Collection
Years
  • 2010-2014
  • 1995-1999  (20)
  • 1965-1969
  • 1950-1954
  • 1940-1944
Year
  • 1
    Publication Date: 2019-07-10
    Description: The next giant leap for mankind will be the human exploration of Mars. Almost certainly within the next thirty years, a human crew will brave the isolation, the radiation, and the lack of gravity to walk on and explore the Red planet. However, because the mission distances and duration will be hundreds of times greater than the lunar missions, a human crew will face much greater obstacles and a higher risk than those experienced during the Apollo program. A single solution to many of these obstacles is to dramatically decrease the mission duration by developing a high performance propulsion system. The gas core nuclear rocket (GCNR) has the potential to be such a system. The gas core concept relies on the use of fluid dynamic forces to create and maintain a vortex. The vortex is composed of a fissile material which will achieve criticality and produce high power levels. By radiatively coupling to the surrounding fluids, extremely high temperatures in the propellant and, thus, high specific impulses can be generated. The ship velocities enabled by such performance may allow a 9 month round trip, manned Mars mission to be considered. Alternatively, one might consider slightly longer missions in ships that are heavily shielded against the intense Galactic Cosmic Ray flux to further reduce the radiation dose to the crew. The current status of the research program at the Los Alamos National Laboratory into the gas core nuclear rocket feasibility will be discussed.
    Keywords: Spacecraft Propulsion and Power
    Type: DE98-001540 , LA-UR-97-3786 , CONF-9709156 , Space and Defence; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-12-03
    Description: The NASA's activities in the development of spacecraft propulsion systems are reviewed, with emphasis on program directions and recent progress made in this domain. The recent trends towards the use of smaller spacecraft and launch vehicles call for new onboard propulsion systems. The NASA's efforts are conducted within the framework of the onboard propulsion program. The research and development work carried out in relation to the different propulsion system technologies are considered: electromagnetic systems; electrostatic systems; electrothermal systems; bipropellant systems; and monopropellant systems.
    Keywords: Spacecraft Propulsion and Power
    Type: ; 35-44
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: A minimum weight optimization of the wing under aeroelastic loads subject to stress constraints is carried out. The loads for the optimization are based on aeroelastic trim. The design variables are the thickness of the wing skins and planform variables. The composite plate structural model incorporates first-order shear deformation theory, the wing deflections are expressed using Chebyshev polynomials and a Rayleigh-Ritz procedure is adopted for the structural formulation. The aerodynamic pressures provided by the aerodynamic code at a discrete number of grid points is represented as a bilinear distribution on the composite plate code to solve for the deflections and stresses in the wing. The lifting-surface aerodynamic code FAST is presently being used to generate the pressure distribution over the wing. The envisioned ENSAERO/Plate is an aeroelastic analysis code which combines ENSAERO version 3.0 (for analysis of wing-body configurations) with the composite plate code.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-CR-204315 , NAS 1.26:204315
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-05
    Description: Temperature sensitive paints (TSP s) have recently been used to detect small temperature differences on aerodynamic model surfaces. These types of applications impose stringent performance requirements on a paint system. The TSP s must operate over a broad temperature range, must be physically robust (cannot chip or peel), must be polishable to at least the smoothness of the model surface, and must have sufficient sensitivity to detect small temperature differences. TSP coatings based on the use of metal complexes in polymer binders were developed at NASA Langley Research Center which meet most of the requirements for detection of small temperature differences under severe environmental conditions.
    Keywords: Spacecraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-05
    Description: Recent advances in computing subsonic flow have been applied to helicopter configurations with various degrees of success. This paper is a comparison of two specific methods applied to a particularly challenging regime of helicopter flight, very low speeds, where the interaction of the rotor wake and the fuselage are most significant. Comparisons are made between different methods of predicting the interactional aerodynamics associated with a simple generic helicopter configuration. These comparisons are made using fuselage pressure data from a Mach-scaled powered model helicopter with a rotor diameter of approximately 3 meters. The data shown are for an advance ratio of 0.05 with a thrust coefficient of 0.0066. The results of this comparison show that in this type of complex flow both analytical techniques have regions where they are more accurate in matching the experimental data.
    Keywords: Aircraft Design, Testing and Performance
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: The effect of elevated chamber pressure on combustion efficiency and heat transfer has been determined at the 100 lbf (445 N) thrust level for nitrogen tetroxide propellants. Measurements were made up to 500 psia (3.45 MPa) with testbed hardware; tests at 100 psia (0.690 MPa) and 250 psia (1.72 MPa) were made with radiation-cooled rhenium chambers. The first task of the program served to determine desirable thruster applications and operating conditions: high total impulse, i.e. communication satellite or spacecraft bus axial engines, at chamber pressures up to 250 psia (1.72 MPa) pressure-fed, or up to 500 psia (3.45 MPa) pump-fed. The hardware modifications and testing required to obtain the data were determined in Task 2, which included design-support hot fire tests; supplemental hardware, including a 250 psia (1.72 MPa) Pc rhenium chamber and a 20% fuel-film cooled platelet injector was fabricated in Task 3. Testing showed that satisfactory operation of Ir-Re radiation chambers is assured at pressures up to 250 psia and may be possible up to 500. The heat transfer data obtained show good correlation with throat Reynolds number and are generally under values given by the simplified Bartz equation; chambers equilibrium temperatures match predicted values. Preliminary optimization of trip configuration and mixture ratio were made; Isp performance from thrust measurements was within 1% of predicted values. Stability, compatibility, and front-end thermal management were determined to be satisfactory.
    Keywords: Spacecraft Propulsion and Power
    Type: NASA-CR-195427-Vol-3 , NAS 1.26:195427-Vol-3 , E-9400-Vol-3
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: The effect of elevated chamber pressure on combustion efficiency and heat transfer has been determined at the 100 lbf (445 N) thrust level for nitrogen tetroxide propellants. Measurements were made up to 500 psia (3.45 MPa) with testbed hardware; tests at 100 psia (0.690 MPa) and 250 psia (1.72 MPa) were made with radiation-cooled rhenium chambers. The first task of the program served to determine desirable thruster applications and operating conditions: high total impulse, i.e., communication satellite or spacecraft bus axial engines, at chamber pressures up to 250 psia (1.72 MPa) pressure-fed, or up to 500 psia (3.45 MPa) pump-fed. The hardware modifications and testing required to obtain the data were determined in Task 2, which included design-support hot fire tests; supplemental hardware, including a 250 psia (1.72 MPa) Pc rhenium chamber and a 20% fuel-film cooled platelet injector was fabricated in Task 3. Testing showed that satisfactory operation of Ir-Re radiation chambers is assured at pressures up to 250 psia and may be possible up to 500. The heat transfer data obtained show good correlation with throat Reynolds number and are generally under values given by the simplified Bartz equation; chambers equilibrium temperatures match predicted values. Preliminary optimization of trip configuration and mixture ratio were made; Isp performance from thrust measurements was within 1% of predicted values. Stability, compatibility, and front-end thermal management were determined to be satisfactory.
    Keywords: Spacecraft Propulsion and Power
    Type: NASA-CR-195427-Vol-1 , NAS 1.26:195427-Vol-1 , E-9400-Vol-1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: The effect of elevated chamber pressure on combustion efficiency and heat transfer has been determined at the 100 lbf (445 N) thrust level for nitrogen tetroxide propellants. Measurements were made up to 500 psia (3.45 Mpa) with testbed hardware; tests at 100 psia (0.690 MPa) and 250 psia (1.72 MPa) were made with radiation-cooled rhenium chambers. The first task of the program served to determine desirable thruster applications and operating conditions: high total impulse, i.e. communication satellite or spacecraft bus axial engines, at chamber pressures up to 250 psia (1.72 MPa) pressure-fed, or up to 500 psia (3.45 MPa) pump-fed. The hardware modifications and testing required to obtain the data were determined in Task 2, which included design-support hot fire tests; supplemental hardware, including a 250 psia (1.72 MPa) Pc rhenium chamber and a 20% fuel-film cooled platelet injector was fabricated in Task 3. Testing showed that satisfactory operation of Ir-Re radiation chambers is assured at pressures up to 250 psia and may be possible up to 500. The heat transfer data obtained show good correlation with throat Reynolds number and are generally under values given by the simplified Bartz equation; chambers equilibrium temperatures match predicted values. Preliminary optimization of trip configuration and mixture ratio were made; Isp performance from thrust measurements was within 1% of predicted values. Stability, compatibility, and front-end thermal management were determined to be satisfactory.
    Keywords: Spacecraft Propulsion and Power
    Type: NASA-CR-195427-Vol-2 , NAS 1.26:195427-Vol-2 , E-9400-Vol-2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-28
    Description: A three-year NASA/BMDO-sponsored experimental program to conduct performance and plume plasma property measurements on two Russian Stationary Plasma Thrusters (SPTs) has been completed. The program utilized experimental facilitates at the University of Michigan's Plasmadynamics and Electric Propulsion Laboratory (PEPL). The main features of the proposed effort were as follows: (1) Characterized Hall thruster (and arcjet) performance by measuring ion exhaust velocity with probes at various thruster conditions; (2) Used a variety of probe diagnostics in the thruster plume to measure plasma properties and flow properties including T(sub e) and n(sub e) ion current density and ion energy distribution, and electric fields by mapping plasma potential; (3) Used emission spectroscopy to identify species within the plume and to measure electron temperatures. A key and unique feature of our research was our collaboration with Russian Hall thruster researcher Dr. Sergey A Khartov, Deputy Dean of International Relations at the Moscow Aviation Institute (MAI). His activities in this program included consulting on and participation in research at PEPL through use of a MAI-built SPT and ion energy probe.
    Keywords: Spacecraft Propulsion and Power
    Type: NASA/CR-97-205777 , NAS 1.26:205777
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-28
    Description: A generic airplane model concept was developed to allow configurations with various agility, performance, handling qualities, and pilot vehicle interface to be generated rapidly for piloted simulation studies. The simple concept allows stick shaping and various stick command types or modes to drive an airplane with both linear and nonlinear components. Output from the stick shaping goes to linear models or a series of linear models that can represent an entire flight envelope. The generic model also has provisions for control power limitations, a nonlinear feature. Therefore, departures from controlled flight are possible. Note that only loss of control is modeled, the generic airplane does not accurately model post departure phenomenon. The model concept is presented herein, along with four example airplanes. Agility was varied across the four example airplanes without altering specific excess energy or significantly altering handling qualities. A new feedback scheme to provide angle-of-attack cueing to the pilot, while using a pitch rate command system, was implemented and tested.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-CR-201651 , NAS 1.26:201651
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...