ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (24)
  • Inorganic and Physical Chemistry  (16)
  • Aircraft Design, Testing and Performance
  • Female
  • 2010-2014
  • 1995-1999  (24)
  • 1965-1969
  • 1950-1954
  • 1940-1944
  • 1997  (24)
Collection
Years
  • 2010-2014
  • 1995-1999  (24)
  • 1965-1969
  • 1950-1954
  • 1940-1944
Year
  • 1
    Publication Date: 2019-07-13
    Description: Studies in the mathematical modeling of the high-speed turbulent combustion has received renewal attention in the recent years. The review of fundamentals, approaches and extensive bibliography was presented by Bray, Libbi and Williams. In order to obtain accurate predictions for turbulent combustible flows, the effects of turbulent fluctuations on the chemical source terms should be taken into account. The averaging of chemical source terms requires to utilize probability density function (PDF) model. There are two main approaches which are dominant in high-speed combustion modeling now. In the first approach, PDF form is assumed based on intuitia of modelliers (see, for example, Spiegler et.al.; Girimaji; Baurle et.al.). The second way is much more elaborate and it is based on the solution of evolution equation for PDF. This approach was proposed by S.Pope for incompressible flames. Recently, it was modified for modeling of compressible flames in studies of Farschi; Hsu; Hsu, Raji, Norris; Eifer, Kollman. But its realization in CFD is extremely expensive in computations due to large multidimensionality of PDF evolution equation (Baurle, Hsu, Hassan).
    Keywords: Inorganic and Physical Chemistry
    Type: NASA-CR-205550 , NAS 1.26:205550
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-12-03
    Description: The principal goal of our recent research on flame spread across liquid pools is the detailed identification of the mechanisms that control the rate and nature of flame spread when the liquid pool is initially at an isothermal bulk temperature that is below the fuel's flash point temperature. In our project, we specialize the subject to highlight the roles of buoyancy-related processes regarding the mechanisms of flame spread, an area of research cited recently by Linan and Williams as one that needs further attention and which microgravity (micro-g) experiments could help to resolve. Toward resolving the effects of buoyancy on this flame spread problem, comparisons - between 1-g and micro-g experimental observations, and between model predictions and experimental data at each of these gravitational levels - are extensively utilized. The present experimental and computational foundation is presented to support identification of the mechanisms that control flame spread in the pulsating flame spread regime for which long-duration, micro-g flame spread experiments have been conducted aboard a sounding rocket.
    Keywords: Inorganic and Physical Chemistry
    Type: Fourth International Microgravity Combustion Workshop; 375-380; NASA-CP-10194
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-23
    Description: The specific volumes of the Zr(41.2)Ti(3.8)Cu(2.5)Ni(10.0)Be(22.5) alloy as a function of temperature, T, are determined by employing an image digitizing technique and numerical calculation methods applied to the electrostatically levitated spherical alloy. The linear fitting of the volumes of the alloy in the liquid, V(sub l), glass, V(sub g) and crystalline V(sub c), states in the temperature ranges shown in parentheses are V(sub l)(T) = 0.1583 + 8.877 x 10(exp -6) T(cu cm/g) (700-1300 K);V(sub g)(T) = 0.1603 + 5.528 x 10(exp -6) T (400-550 K);V(sub c)(T) = 0.1583 + 6.21 x 10(exp -6)T(400-850 K). The average volume thermal expansion coefficients within the temperature ranges are determined to be 5.32, 3.39. and 3.83 x 10(exp -5) (1/K) for the liquid, glass, and crystalline states, respectively.
    Keywords: Inorganic and Physical Chemistry
    Type: Applied Physics Letters (ISSN 0003-6951); Volume 70; No. 6; 726-728
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: A minimum weight optimization of the wing under aeroelastic loads subject to stress constraints is carried out. The loads for the optimization are based on aeroelastic trim. The design variables are the thickness of the wing skins and planform variables. The composite plate structural model incorporates first-order shear deformation theory, the wing deflections are expressed using Chebyshev polynomials and a Rayleigh-Ritz procedure is adopted for the structural formulation. The aerodynamic pressures provided by the aerodynamic code at a discrete number of grid points is represented as a bilinear distribution on the composite plate code to solve for the deflections and stresses in the wing. The lifting-surface aerodynamic code FAST is presently being used to generate the pressure distribution over the wing. The envisioned ENSAERO/Plate is an aeroelastic analysis code which combines ENSAERO version 3.0 (for analysis of wing-body configurations) with the composite plate code.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-CR-204315 , NAS 1.26:204315
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: An ultrasonic imaging technique has been developed to examine the propagation of a smolder reaction within a porous combustible material. The technique provides information about the location of a propagating smolder front, as well as line-of-sight average permeability variations of the smoldering material. The method utilizes the observation that transmission of an ultrasonic signal through a porous material increases with permeability. Since a propagating smolder reaction leaves behind char with a higher permeability than the original material, ultrasound transmission can be employed to monitor smolder progress. The technique can also be used to track the char evolution as it continues to react. Experiments are presented where the technique is applied to smoldering combustion in a two-dimensional geometry. The results have furthered the understanding of two-dimensional smolder, especially in identifying the controlling mechanisms leading to the transition from smoldering to flaming. The applicability of ultrasonic tomography to smoldering combustion has also been investigated.
    Keywords: Inorganic and Physical Chemistry
    Type: Fourth International Microgravity Combustion Workshop; 441-446; NASA-CP-10194
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: Flame spread over flat solid fuel beds is a useful paradigm for studying the behavior of more complex two-phase nonpremixed flames. For practical applications, two of the most important elements of flame spreading are the effects of (1) the ambient atmosphere (e.g. pressure and composition) and (2) the flow environment on the spread rate and extinction conditions. Concerning (1), studies of flame spread in vitiated air and non-standard atmospheres such as those found in undersea vessels and spacecraft are particularly important for the assessment of fire hazards in these environments as well as determination of the effectiveness of fire suppressants. Concerning (2), the flow environment may vary widely even when no forced flow is present because of buoyancy effects. Consequently, the goal of this work is to employ microgravity (micro g) experiments to extend previous studies of the effects of ambient atmosphere and the flow environment on flame spread through the use of microgravity (micro g) experiments. Because of the considerable differences between upward (concurrent-flow) and downward (opposed-flow) flame spread at 1g (Williams, 1976, Fernandez-Pello, 1984), in this work both upward and downward 1g spread are tested. Two types of changes to the oxidizing atmosphere are considered in this work. One is the addition of sub-flammability-limit concentrations of a gaseous fuel ('partially premixed' atmospheres). This is of interest because in fires in enclosures, combustion may occur under poorly ventilated conditions, so that oxygen is partially depleted from the air and is replaced by combustible gases such as fuel vapors, H2 or CO. Subsequent fire spread over the solid fuel could occur under conditions of varying oxygen and gaseous fuel content. The potential significance of flame spread under vitiated or partially premixed conditions has been noted previously (Beyler, 1984). The second change is the diluent type, which affects the radiative properties of the mixture as well as the Lewis number (Le) of the reactants in the atmosphere, which for oxygen is defined as the thermal diffusivity of the bulk mixture divided by the mass diffusivity of oxygen into the bulk mixture. Understanding the effect of diluent type is desirable because in some undersea and spaceborne habitations, it is desirable to use diluent gases other than nitrogen. Prior experiments have shown that both radiation (Bhattacharjee and Altenkirch, 1993) and Lewis number (Zhang et al, 1992) effects are important in flame spreading problems.
    Keywords: Inorganic and Physical Chemistry
    Type: Fourth International Microgravity Combustion Workshop; 417-422; NASA-CP-10194
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: This research program is concerned with the effect of low speed flow on the spreading and extinction processes of flames over solid fuels. We are particularly interested in the flammability boundary and the near-limit flame behavior in a microgravity environment. Primary attention is given to flame propagation in concurrent flow - the more hazardous situation from the point of view of fire safety. Both theoretical modeling and experimental research are in progress. This project passed the Science Concept Review (SCR) in 1996. As a result, the experiment continues on the flight definition path, and is currently scheduled to be performed in the Space Station Fluids and Combustion Facility (FCF).
    Keywords: Inorganic and Physical Chemistry
    Type: Fourth International Microgravity Combustion Workshop; 399-404; NASA-CP-10194
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: We have built an apparatus for measuring flame spread rates through non-homogeneous fuel-air mixtures as a function of layer thickness and concentration. The layer thickness is adjusted by controlling the diffusion time above a fuel-saturated porous media, while the concentration is controlled by the fuel temperature. Normal gravity tests with methanol have so far explored largely the effect of temperature, as well as the effects of various aspects of the apparatus. Good agreement with previous research has been obtained. We have also demonstrated the ability of a rainbow schlieren system to quantitatively measure fuel vapor concentrations in the static case.
    Keywords: Inorganic and Physical Chemistry
    Type: Fourth International Microgravity Combustion Workshop; 343-348; NASA-CP-10194
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-05
    Description: Recent advances in computing subsonic flow have been applied to helicopter configurations with various degrees of success. This paper is a comparison of two specific methods applied to a particularly challenging regime of helicopter flight, very low speeds, where the interaction of the rotor wake and the fuselage are most significant. Comparisons are made between different methods of predicting the interactional aerodynamics associated with a simple generic helicopter configuration. These comparisons are made using fuselage pressure data from a Mach-scaled powered model helicopter with a rotor diameter of approximately 3 meters. The data shown are for an advance ratio of 0.05 with a thrust coefficient of 0.0066. The results of this comparison show that in this type of complex flow both analytical techniques have regions where they are more accurate in matching the experimental data.
    Keywords: Aircraft Design, Testing and Performance
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-28
    Description: A generic airplane model concept was developed to allow configurations with various agility, performance, handling qualities, and pilot vehicle interface to be generated rapidly for piloted simulation studies. The simple concept allows stick shaping and various stick command types or modes to drive an airplane with both linear and nonlinear components. Output from the stick shaping goes to linear models or a series of linear models that can represent an entire flight envelope. The generic model also has provisions for control power limitations, a nonlinear feature. Therefore, departures from controlled flight are possible. Note that only loss of control is modeled, the generic airplane does not accurately model post departure phenomenon. The model concept is presented herein, along with four example airplanes. Agility was varied across the four example airplanes without altering specific excess energy or significantly altering handling qualities. A new feedback scheme to provide angle-of-attack cueing to the pilot, while using a pitch rate command system, was implemented and tested.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-CR-201651 , NAS 1.26:201651
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...