ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Geophysics
  • Models, Molecular
  • 2010-2014
  • 1995-1999  (38)
  • 1996  (38)
  • 11
    Publication Date: 2019-07-13
    Description: This report summarizes the activities sponsored by the Office of Naval Research for the Magnetospheric Atmospheric X-ray Imaging Experiment (MAXIE). The MAXIE instrument was developed as a joint activity of Lockheed, The Aerospace Corporation, and the University of Bergen, Norway. Lockheed was responsible for the overall management of the program, interfacing with the appropriate government agencies, the overall electrical and mechanical design, flight software, environmental testing, spacecraft integration activities, on orbit checkout, and data processing activities. The Magnetospheric Atmospheric X-ray Imaging Experiment (MAXIE), the ONR 401 experiment, is the first in a new class of satellite-borne remote sensing instruments. The primary innovation is the ability to obtain rapid, sequential, images with high sensitivity of the earth's X ray aurora from a low altitude polar orbiting satellite. These images can be used to identify dynamic temporal variations in the three-dimensional (energy and position) distribution of electron precipitation into the atmosphere. MAXIE was launched on the TIROS NOAA-13 satellite on 9 August 1993. The experiment performed well during its turn-on sequence; however, the spacecraft bus failed on 21 August 1993. New spacebased technologies successfully used in MAXIE were mixed-mode ASIC microcircuits, a zero torque scanning system with associated viscoelastic damping, a paraffin stow release mechanism, a parallel integrating PHA processor, a low noise Si(Li) sensor telescope, and an advanced thermal cooling system. MAXIE's on orbit operation, control of penetrating particle backgrounds, and scientific data indicated good overall performance.
    Keywords: Geophysics
    Type: AD-A310809
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-08-16
    Description: We compare volume mixing ratio profiles of N2O, CFC-11, CFC-12, CCl4, SF6, and HCl in the mid-latitude lower stratosphere measured by the ATMOS Fourier transform spectrometer on the ATLAS-3 Space Shuttle Mission with in situ measurements acquired from the NASA ER-2 aircraft during Nov. 1994. Good agreement is found between ATMOS and in situ correlations of [CFC-11], [CFC-12], and [SF6] with [N2O]. ATMOS measurements of [CCl4] are 15% high compared to ER-2 data, but agree within the systematic uncertainties. ATMOS observations of [HCl] vs [N2O] are within approximately 10% of ER-2 data for [HCl] 〉 1 ppbv, but exceed in situ measurements by larger fractional amounts for smaller [HCl]. ATMOS measurements of [ClONO2] agree well with values inferred from in situ observations of [ClO], [NO], and [O3]. The sum of [HCl] and [ClONO2] observed by ATMOS, supplemented by a minor contribution from [ClO] estimated with a photochemical model, is consistent with the levels of inorganic chlorine inferred from in situ measurements of chlorine source gases.
    Keywords: Geophysics
    Type: Paper-96GL01678 , Geophysical Research Letters (ISSN 0094-8534); 23; 17; 2393-2396
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-03-08
    Description: Domain 5 is an essential active-site component of group II intron ribozymes. The role of backbone substituents in D5 function was explored through synthesis of a series of derivatives containing deoxynucleotides at each position along the D5 strand. Kinetic screens revealed that eight 2'-hydroxyl groups were likely to be critical for activity of D5. Through two separate methods, including competitive inhibition and direct kinetic analysis, effects on binding and chemistry were distinguished. Depending on their function, important 2'-hydroxyl groups lie on opposite faces of the molecule, defining distinct loci for molecular recognition and catalysis by D5.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Abramovitz, D L -- Friedman, R A -- Pyle, A M -- GM41371/GM/NIGMS NIH HHS/ -- GM50313/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Mar 8;271(5254):1410-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8596912" target="_blank"〉PubMed〈/a〉
    Keywords: Base Composition ; Base Sequence ; Binding Sites ; Catalysis ; Exons ; Hydrogen Bonding ; Hydroxyl Radical/chemistry ; *Introns ; Kinetics ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Oligoribonucleotides/chemistry/metabolism ; RNA/metabolism ; RNA, Catalytic/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 1996-12-20
    Description: Enoyl reductase (ENR), an enzyme involved in fatty acid biosynthesis, is the target for antibacterial diazaborines and the front-line antituberculosis drug isoniazid. Analysis of the structures of complexes of Escherichia coli ENR with nicotinamide adenine dinucleotide and either thienodiazaborine or benzodiazaborine revealed the formation of a covalent bond between the 2' hydroxyl of the nicotinamide ribose and a boron atom in the drugs to generate a tight, noncovalently bound bisubstrate analog. This analysis has implications for the structure-based design of inhibitors of ENR, and similarities to other oxidoreductases suggest that mimicking this molecular linkage may have generic applications in other areas of medicinal chemistry.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baldock, C -- Rafferty, J B -- Sedelnikova, S E -- Baker, P J -- Stuitje, A R -- Slabas, A R -- Hawkes, T R -- Rice, D W -- New York, N.Y. -- Science. 1996 Dec 20;274(5295):2107-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK. D.Rice@sheffield.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8953047" target="_blank"〉PubMed〈/a〉
    Keywords: Anti-Bacterial Agents/*metabolism/pharmacology ; Binding Sites ; Boron Compounds/*metabolism/pharmacology ; Crystallography, X-Ray ; Drug Design ; Drug Resistance, Microbial ; Enoyl-(Acyl-Carrier-Protein) Reductase (NADH) ; Enzyme Inhibitors/*metabolism/pharmacology ; Escherichia coli/enzymology ; Escherichia coli Proteins ; Fatty Acid Synthase, Type II ; Fatty Acid Synthases/antagonists & inhibitors/*chemistry/metabolism ; Hydrogen Bonding ; Models, Molecular ; NAD/*metabolism ; Oxidoreductases/antagonists & inhibitors/*chemistry/metabolism ; Protein Conformation ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 1996-06-14
    Description: The molybdoenzyme dimethylsulfoxide (DMSO) reductase contributes to the release of dimethylsulfide, a compound that has been implicated in cloud nucleation and global climate regulation. The crystal structure of DMSO reductase from Rhodobacter sphaeroides reveals a monooxo molybdenum cofactor containing two molybdopterin guanine dinucleotides that asymmetrically coordinate the molybdenum through their dithiolene groups. One of the pterins exhibits different coordination modes to the molybdenum between the oxidized and reduced states, whereas the side chain oxygen of Ser147 coordinates the metal in both states. The change in pterin coordination between the Mo(VI) and Mo(IV) forms suggests a mechanism for substrate binding and reduction by this enzyme. Sequence comparisons of DMSO reductase with a family of bacterial oxotransferases containing molybdopterin guanine dinucleotide indicate a similar polypeptide fold and active site with two molybdopterins within this family.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schindelin, H -- Kisker, C -- Hilton, J -- Rajagopalan, K V -- Rees, D C -- GM00091/GM/NIGMS NIH HHS/ -- GM50775/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Jun 14;272(5268):1615-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8658134" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Coenzymes/*chemistry ; Crystallography, X-Ray ; *Iron-Sulfur Proteins ; Metalloproteins/*chemistry ; Models, Molecular ; Molecular Sequence Data ; Oxidation-Reduction ; Oxidoreductases/*chemistry/metabolism ; Protein Conformation ; Pteridines/*chemistry ; Rhodobacter sphaeroides/*enzymology ; Sequence Homology, Amino Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-02-09
    Description: The force-displacement response of a single duplex DNA molecule was measured. The force saturates at a plateau around 70 piconewtons, which ends when the DNA has been stretched about 1.7 times its contour length. This behavior reveals a highly cooperative transition to a state here termed S-DNA. Addition of an intercalator suppresses this transition. Molecular modeling of the process also yields a force plateau and suggests a structure for the extended form. These results may shed light on biological processes involving DNA extension and open the route for mechanical studies on individual molecules in a previously unexplored range.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cluzel, P -- Lebrun, A -- Heller, C -- Lavery, R -- Viovy, J L -- Chatenay, D -- Caron, F -- New York, N.Y. -- Science. 1996 Feb 9;271(5250):792-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut Curie URA Centre National de la Recherche Scientifique (CNRS), Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8628993" target="_blank"〉PubMed〈/a〉
    Keywords: Chemistry, Physical ; DNA/*chemistry ; Models, Molecular ; *Nucleic Acid Conformation ; Physicochemical Phenomena ; Software
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-01-19
    Description: Small proteins or protein domains generally require disulfide bridges or metal sites for their stabilization. Here it is shown that the beta beta alpha architecture of zinc fingers can be reproduced in a 23-residue polypeptide in the absence of metal ions. The sequence was obtained through an iterative design process. A key feature of the final design is the incorporation of a type II' beta turn to aid in beta-hairpin formation. Nuclear magnetic resonance analysis reveals that the alpha helix and beta hairpin are held together by a defined hydrophobic core. The availability of this structural template has implications for the development of functional polypeptides.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Struthers, M D -- Cheng, R P -- Imperiali, B -- New York, N.Y. -- Science. 1996 Jan 19;271(5247):342-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8553067" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Circular Dichroism ; DNA-Binding Proteins/chemistry ; *Genes, Synthetic ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Molecular Sequence Data ; Peptides/*chemistry ; *Protein Engineering ; Protein Folding ; Protein Structure, Secondary ; *Protein Structure, Tertiary ; Proteins/*chemistry ; Transcription Factors/chemistry ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 1996-10-25
    Description: Histone-DNA contacts within a nucleosome influence the function of trans-acting factors and the molecular machines required to activate the transcription process. The internal architecture of a positioned nucleosome has now been probed with the use of photoactivatable cross-linking reagents to determine the placement of histones along the DNA molecule. A model for the nucleosome is proposed in which the winged-helix domain of the linker histone is asymmetrically located inside the gyres of DNA that also wrap around the core histones. This domain extends the path of the protein superhelix to one side of the core particle.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pruss, D -- Bartholomew, B -- Persinger, J -- Hayes, J -- Arents, G -- Moudrianakis, E N -- Wolffe, A P -- New York, N.Y. -- Science. 1996 Oct 25;274(5287):614-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2710, USA. awlme@helix.nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8849453" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Binding Sites ; Cross-Linking Reagents ; DNA/*chemistry/metabolism ; Histones/*chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Nucleosomes/*chemistry ; Protein Conformation ; Protein Structure, Secondary ; RNA, Ribosomal/genetics ; Recombinant Proteins/chemistry ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 1996-09-20
    Description: Nucleic acid triplexes are formed by sequence-specific interactions between single-stranded polynucleotides and the double helix. These triplexes are implicated in genetic recombination in vivo and have application to areas that include genome analysis and antigene therapy. Despite the importance of the triple helix, only limited high-resolution structural information is available. The x-ray crystal structure of the oligonucleotide d(GGCCAATTGG) is described; it was designed to contain the d(G middle dotGC)2 fragment and thus provide the basic repeat unit of a DNA triple helix. Parameters derived from this crystal structure have made it possible to construct models of both parallel and antiparallel triple helices.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vlieghe, D -- Van Meervelt, L -- Dautant, A -- Gallois, B -- Precigoux, G -- Kennard, O -- New York, N.Y. -- Science. 1996 Sep 20;273(5282):1702-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium. Structurale, EP CNRS, Universite de Bordeaux.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8781231" target="_blank"〉PubMed〈/a〉
    Keywords: Base Composition ; Base Sequence ; Crystallography, X-Ray ; DNA/*chemistry ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; *Nucleic Acid Conformation ; Oligodeoxyribonucleotides/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 1996-07-26
    Description: The functional mimicry of a protein by an unrelated small molecule has been a formidable challenge. Now, however, the biological activity of a 166-residue hematopoietic growth hormone, erythropoietin (EPO), with its class 1 cytokine receptor has been mimicked by a 20-residue cyclic peptide unrelated in sequence to the natural ligand. The crystal structure at 2.8 A resolution of a complex of this agonist peptide with the extracellular domain of EPO receptor reveals that a peptide dimer induces an almost perfect twofold dimerization of the receptor. The dimer assembly differs from that of the human growth hormone (hGH) receptor complex and suggests that more than one mode of dimerization may be able to induce signal transduction and cell proliferation. The EPO receptor binding site, defined by peptide interaction, corresponds to the smaller functional epitope identified for hGH receptor. Similarly, the EPO mimetic peptide ligand can be considered as a minimal hormone, and suggests the design of nonpeptidic small molecule mimetics for EPO and other cytokines may indeed be achievable.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Livnah, O -- Stura, E A -- Johnson, D L -- Middleton, S A -- Mulcahy, L S -- Wrighton, N C -- Dower, W J -- Jolliffe, L K -- Wilson, I A -- GM-49497/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Jul 26;273(5274):464-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and the Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10666 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8662530" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Crystallography, X-Ray ; Drug Design ; Erythropoietin/*chemistry/*metabolism ; Growth Hormone/chemistry/metabolism ; Humans ; Hydrogen Bonding ; Models, Molecular ; *Molecular Mimicry ; Molecular Sequence Data ; Peptides, Cyclic/*chemistry/*metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Receptors, Erythropoietin/*agonists/chemistry/metabolism ; Receptors, Somatotropin/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...