ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: Work continued on two projects which had been started during previous years. Both projects involve calculations of the subsonic, turbulent far wake of a two-dimensional object at a Reynolds number of 1000 (based on wake momentum thickness). This flow was used as a test case for direct comparison of various turbulence models and a direct numerical simulations (DNS) of this flow were undertaken. In the turbulence model comparison studies, for any particular model tested, a unique self-similar solution was obtained far enough downstream, regardless of inlet conditions. Furthermore, different turbulence models led to different far-wake equilibrium solutions. No turbulence model could correctly predict all features of the turbulent far wake. For example, the spreading rate and turbulent shear stresses were underpredicted by all the standard models (both two-equation and full Reynolds stress models). In cases where a more correct spreading rate was achieved, it was at the expense of the turbulent kinetic energy, which was overpredicted. In general, the Algebraic Dissipation Rate Model of Gatski and Speziale, 1992, when added to any of the standard models, improved the results dramatically. Also, full Reynolds stress closure models did a much better job at predicting the shapes of both the mean and turbulence profiles, but the spreading rate was not significantly improved over that predicted by the simpler two-equation models. There are two main conclusions from these studies: First, in a comparison such as this, it is not enough to compare just one parameter, like the spreading rate. A good prediction for one parameter does not necessarily imply good predictions for all parameters in a flow. Second, since no turbulence model could correctly predict the turbulent far wake, much of the important physics of turbulent free shear flows is apparently lost by the assumptions inherent in today's methods of turbulence modeling; turbulence models must be improved. Direct simulations of this flow were begun last year in order to provide a data base through which some of the deficiencies of the existing turbulence models could be identified. Quantities such as the pressure-strain correlation, turbulent diffusion, and the dissipation rate tensor can be easily calculated from the DNS results, whereas these quantities are nearly impossible to measure experimentally. Improvements to existing turbulence models (and development of new models) require knowledge about flow quantities such as these. During this summer, diagnostics codes were written which will calculate the parameters mentioned above, along with other single-point and multi-point statistics. The DNS calculations are still in progress at the time of this writing. When these calculations are complete, the diagnostics codes will be applied so that the results can aid turbulence modelers. In addition, the results will show whether or not there exists a universal equilibrium turbulent far wake, independent of initial conditions.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: The 1995 NASA-ODU American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program; 69; NASA-CR-198210
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-31
    Description: There is a need for experimental measurements in complex turbulent flows that originate from very well-defined initial conditions. Testing of large-eddy simulations and other higher-order computation schemes requires inlet boundary condition data that are not normally measured. The use of fully developed upstream conditions offers a solution to this dilemma so that the upstream conditions can be adequately computed at any level of sophistication. The plane diffuser experiment by Obi et al. (1993) has received a lot of attention because it has fully-developed inlet conditions and it includes separation from a smooth wall, subsequent reattachment and redevelopment of the downstream boundary layer. The objective of this study is to provide careful qualification and detailed measurements in a recreation of the Obi experiment. The work will include extensive documentation of the flow two-dimensionality and detailed measurements required for testing of flow computations.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Center for Turbulence Research Annual Research Briefs: 1995; 117-120; NASA-CR-200667
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: This paper presents the application of the Generalized Fluid System Simulation Program (GFSSP) to model the time-dependent flow in a complex secondary flow circuit of the turbopump of the Fastrac engine currently under development at Marshall Space Flight Center. GFSSP is a general purpose computer program for analyzing steady-state and time-dependant flowrates, pressures, temperatures, and concentrations in a complex flow network. The program employs a finite volume formulation of mass, momentum and energy conservation equations in conjunction with the thermodynamic equation of state of real fluids. GFSSP was used to calculate the axial thrust and internal flow distribution of the Fastrac engine turbopump during the start and shut down transients. The models discussed in this paper use boundary conditions that were extracted from turbopump test data. The GFSSP predicted turbopump secondary flow passage pressures and temperatures were compared with actual measured values.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Joint Propulsion; Jun 21, 1999; Los Angeles, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: In order to determine the effect of surface irregularities on local convective heat transfer, the variation in heat transfer coefficients on small (2-6 mm diam) hemispherical roughness elements on a flat plate has been studied in a wind funnel using IR techniques. Heat transfer enhancement was observed to vary over the roughness elements with the maximum heat transfer on the upstream face. This heat transfer enhancement increased strongly with roughness size and velocity when there was a laminar boundary layer on the plate. For a turbulent boundary layer, the heat transfer enhancement was relatively constant with velocity, but did increase with element size. When multiple roughness elements were studied, no influence of adjacent roughness elements on heat transfer was observed if the roughness separation was greater than approximately one roughness element radius. As roughness separation was reduced, less variation in heat transfer was observed on the downstream elements. Implications of the observed roughness enhanced heat transfer on ice accretion modeling are discussed.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA/CR-95-207285 , NAS 1.26:207285 , AIAA Paper 94-0801 , Journal of Thermophysics and Heat Transfer; 9; 1; 175-180|Aerospace Sciences Meeting; Jan 10, 1994 - Jan 13, 1994; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: This paper summarizes the state of 3D CFD based models of the time average flow field within axial flow multistage turbomachines. Emphasis is placed on models which are compatible with the industrial design environment and those models which offer the potential of providing credible results at both design and off-design operating conditions. The need to develop models which are free of aerodynamic input from semi-empirical design systems is stressed. The accuracy of such models is shown to be dependent upon their ability to account for the unsteady flow environment in multistage turbomachinery. The relevant flow physics associated with some of the unsteady flow processes present in axial flow multistage machinery are presented along with procedures which can be used to account for them in 3D CFD simulations. Sample results are presented for both axial flow compressors and axial flow turbines which help to illustrate the enhanced predictive capabilities afforded by including these procedures in 3D CFD simulations. Finally, suggestions are given for future work on the development of time average flow models.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Turbo Expo; Jun 07, 1999 - Jun 10, 1999; Indianapolis, IN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-10
    Description: Luminescent molecular probes imbedded in a polymer binder form a temperature or pressure paint. On excitation by light of the proper wavelength, the luminescence, which is quenched either thermally or by oxygen, is detected by a camera or photodetector. From the detected luminescent intensity, temperature and pressure can be determined. The basic photophysics, calibration, accuracy and time response of a luminescent paints is described followed by applications in low speed, transonic, supersonic and cryogenic wind tunnels and in rotating machinery.
    Keywords: Fluid Mechanics and Heat Transfer
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-10
    Description: An evaporative cooling membrane device is disclosed having a flat or pleated plate housing with an enclosed bottom and an exposed top that is covered with at least one sheet of hydrophobic porous material having a thin thickness so as to serve as a membrane. The hydrophobic porous material has pores with predetermined dimensions so as to resist any fluid in its liquid state from passing therethrough but to allow passage of the fluid in its vapor state, thereby, causing the evaporation of the fluid and the cooling of the remaining fluid. The fluid has a predetermined flow rate. The evaporative cooling membrane device has a channel which is sized in cooperation with the predetermined flow rate of the fluid so as to produce laminar flow therein. The evaporative cooling membrane device provides for the convenient control of the evaporation rates of the circulating fluid by adjusting the flow rates of the laminar flowing fluid.
    Keywords: Fluid Mechanics and Heat Transfer
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-10
    Description: A two component Point Doppler Velocimetry (PDV) system has been developed and tested. Improvements were made to an earlier PDV system, in terms of experimental techniques, as well as the data acquisition and reduction software. Measurements of the streamwise and spanwise mean and fluctuating velocities for flows from a rectangular channel and over an NACA 0012 airfoil were made, and the data were compared against hot wire data. The closest to the airfoil surface that PDV measurements could be made was on the order of 0.005 m(0.2", z/c = 0.0169). When the PDV and hot wire data were compared, the time traces for each appeared similar. The mean velocities agreed to within plus or minus 2 m/sec, while the RMS velocities agreed to plus or minus 0.4 m/sec. While the PDV time autocorrelations agreed with those of the hot wire data, the PDV power spectral densities were noisier above 750 Hz. A major source of error in these experiments was determined to be the drifting of the iodine cell stem temperatures. While the stem temperatures were controlled to within plus or minus 0.1 C, this could lead to a frequency shift of as much as 6 MHz, which translates into an error of 1.6 m/sec for the back scatter channel, and up to 6.9 m/sec for the forward scatter channel. These error estimates are consistent with the observed error magnitudes.
    Keywords: Fluid Mechanics and Heat Transfer
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...