ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society of Hematology  (14)
  • 1995-1999  (14)
  • 1980-1984
  • 1930-1934
  • 1920-1924
  • 1998  (12)
  • 1995  (2)
  • 1
    Publication Date: 1995-07-01
    Description: We have compared the binding of affinity-purified anti-PlA1 IgG from seven nonrelated donors with chimeric integrin subunit beta 3 molecules expressed in the baculovirus-Spodoptera frugiperda insect cell system. Beta 3 chimeras were engineered to include segments of antigenic human beta 3 sequences spliced to intervening segments of nonantigenic Xenopus beta 3 sequence. Our results clearly show that antibodies from all seven donors will bind to nondenatured molecules containing the antigenic human beta 3 Cys26-Cys38 loop only when it is presented in a correct orientation that must be maintained by noncontiguous human sequences. Key downstream sequences are located within the region beta 3(288–490), flanking either side of the putative long-range disulfide at Cys435. Although our results confirm unambiguously that the Leu/Pro polymorphism at position 33 in human beta 3 is necessary for the expression of PlA epitopes, they also indicate that this polymorphic sequence alone is not sufficient. The requirement for additional human beta 3 sequence transcends the need to maintain a correct orientation within the Cys26-Cys38 loop itself, because the murine monoclonal antibody SZ21, which recognizes the sequence beta 3(28–35) contained within the Cys26-Cys38 loop, binds to all chimeras containing this loop, even if the same chimeras are not recognized by anti-PlA1. Our results indicate that additional noncontiguous residues encompassed by the sequence 288–490 either directly contribute to the composition of the PlA1 epitope or, more likely, maintain the Cys26-Cys38 loop in a proper orientation with respect to the remainder of the beta 3 molecule and thereby maintain proper antigenic presentation of the sequences in that loop.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1998-06-15
    Description: Ex vivo expansion of hematopoietic stem cell (HSC) is an attractive technology for its potency of a variety of clinical applications. Such a technology has been achieved to some extent with combinations of various cytokines or continuous perfusion cultures. However, much more improvement is required especially for expansion of primitive hematopoietic progenitors. We propose here a novel molecular approach that might have the potential to compensate the current expansion. We designed an adenovirus vector to transiently express human epidermal growth factor receptor (EGFR), which is known to transduce only a mitogenic, but not a differentiation signal to mouse bone marrow cells on human purified CD34+ peripheral blood (PB) cells, and tried to expand these cells with EGF ex vivo. Because we found that exposure of CD34+ PB cells to cytokines induced surface expression of adenovirus-internalization receptor and rendered these cells permissive to adenovirus infection, we infected these cells with the adenovirus vector carrying EGFR gene in the presence of cytokines. Two-color flow cytometric analysis demonstrated that 60.3% ± 22.4% of CD34+ cells expressed the adenovirus-mediated EGFR. Moreover, long-term culture-initiating cell assay showed that adenovirus vector could transduce more primitive progenitors. Subsequently, we tried to expand these cells in suspension culture with EGF for 5 days. Methylcellulose clonal assay showed that EGF induced 5.0- ± 2.4-fold proliferation of the colony-forming unit pool during 5 days of expansion. The simple procedure of efficient adenovirus gene delivery to immature hematopoietic cells proved promising, and this technique was potentially applicable for a novel strategy aiming at ex vivo expansion of hematopoietic progenitors.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1998-11-15
    Description: The platelet integrin IIbβ3 has become a new target for the treatment of pathological thrombosis. It becomes apparent that the affinity of IIbβ3 for its ligands is dynamically regulated by inside-out signaling. However, the components that couple diverse intracellular signals to the cytoplasmic domains of IIbβ3 remain obscure. Employing a chymotrypsin-induced IIbβ3 activation model, we previously proposed the hypothesis that Na+/Ca2 +exchanger (NCX) may be involved in inside-out signaling (Shiraga et al:Blood 88:2594, 1996). In the present study, employing two unrelated Na+/Ca2+ exchange inhibitors, 3′,4′-dichlorobenzamil (DCB) and bepridil, we investigated the role of NCX in platelet activation induced by various agonists in detail. Both inhibitors abolished platelet aggregation induced by all agonists examined via the inhibition of IIbβ3 activation. Moreover, these inhibitors abolished IIbβ3 activation induced by phorbol 12-myristate 13-acetate or A23187. On the other hand, neither of these inhibitors showed apparent inhibitory effects on protein phosphorylation of pleckstrin or myosin light chain, or an increase in intracellular calcium ion concentrations evoked by 0.1 U/mL thrombin. These effects of the NCX inhibitors are in striking contrast to those of protein kinase C inhibitor, Ro31-8220. Biochemical and ultrastructural analyses showed that NCX inhibitors, particularly DCB, made platelets “thrombasthenic”. These findings suggest that the NCX is involved in the common steps of inside-out signaling through integrin IIbβ3.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1998-11-15
    Description: Platelet IIbβ3 is a prototypic integrin and plays a critical role in platelet aggregation. Occupancy of IIbβ3 with multivalent RGD ligands, such as fibrinogen, induces both expression of ligand-induced binding sites (LIBS) and IIbβ3 clustering, which are thought to be necessary for outside-in signaling. However, the association between LIBS expression and outside-in signaling remains elusive. In this study, we used various IIbβ3-specific peptidomimetic compounds as a monovalent ligand instead of fibrinogen and examined the association between LIBS expression and outside-in signaling such as IIbβ3-mediated intracellular Ca2+ signaling. Using a set of monoclonal antibodies (MoAbs) against LIBS, we showed that antagonists can be divided into two groups. In group I, antagonists can induce LIBS on both IIb and β3 subunits. In group II, antagonists can induce LIBS on the IIb subunit, but not on the β3 subunit. Inhibition studies suggested that group I and group II antagonists interact with distinct but mutually exclusive sites on IIbβ3. Neither group I nor group II antagonist increased intracellular Ca2+concentrations ([Ca2+]i) in nonactivated platelets. All antagonists at nanomolar concentrations abolished the increase in [Ca2+]i in 0.03 U/mL thrombin-stimulated platelets, which is dependent on both fibrinogen-binding to IIbβ3 and platelet-aggregation. However, only group I antagonists at higher concentrations dose-dependently augmented the [Ca2+]i increase, which is due to aggregation-independent thromboxane A2 production. This increase in [Ca2+]i was not observed in thrombasthenic platelets, which express no detectable IIbβ3. Thus, only the group I antagonists, albeit a monovalent ligand, can initiate IIbβ3-mediated intracellular Ca2+ signaling in the presence of thrombin stimulation. Our findings strongly suggest the association between β3LIBS expression and IIbβ3-mediated intracellular Ca2+ signaling in platelets.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1995-05-15
    Description: The p210bcr/abl chimeric protein is considered to be implicated in the pathogenesis of Philadelphia chromosome-positive human leukemias. To investigate its biologic function in vivo, we generated transgenic mice expressing p210bcr/abl driven by the metallothionein enhancer/promoter. Two of six founder mice and the transgenic progeny developed leukemias several months after birth. In the leukemic tissues, the expression of the p210bcr/abl transgene product was detected and the increased tyrosine-phosphorylation of cellular proteins was observed. The expressed p210bcr/abl transgene product was shown to possess an enhanced kinase activity. The leukemic cells showed rearrangements in the T-cell receptor loci, indicating that the leukemic cells were monoclonal and committed to the T-cell lineage. Polymerase chain reaction analysis for tissue distribution of p210bcr/abl expression showed that, in the transgenic line that reproducibly developed leukemias, p210bcr/abl was expressed in the hematopoietic tissues such as thymus and spleen; on the other hand, in the transgenic lines that have not developed leukemias, p210bcr/abl expression was detected only in the nonhematopoietic tissues such as the brain and kidney. These results suggest that the tumorigenicity of the p210bcr/abl chimeric protein is restricted to the hematopoietic tissues in vivo and that an event enhancing p210bcr/abl expression contributed a proliferative advantage to hematopoietic precursor cells and eventually developed T-cell leukemia in transgenic mice.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1998-11-15
    Description: The platelet integrin IIbβ3 has become a new target for the treatment of pathological thrombosis. It becomes apparent that the affinity of IIbβ3 for its ligands is dynamically regulated by inside-out signaling. However, the components that couple diverse intracellular signals to the cytoplasmic domains of IIbβ3 remain obscure. Employing a chymotrypsin-induced IIbβ3 activation model, we previously proposed the hypothesis that Na+/Ca2 +exchanger (NCX) may be involved in inside-out signaling (Shiraga et al:Blood 88:2594, 1996). In the present study, employing two unrelated Na+/Ca2+ exchange inhibitors, 3′,4′-dichlorobenzamil (DCB) and bepridil, we investigated the role of NCX in platelet activation induced by various agonists in detail. Both inhibitors abolished platelet aggregation induced by all agonists examined via the inhibition of IIbβ3 activation. Moreover, these inhibitors abolished IIbβ3 activation induced by phorbol 12-myristate 13-acetate or A23187. On the other hand, neither of these inhibitors showed apparent inhibitory effects on protein phosphorylation of pleckstrin or myosin light chain, or an increase in intracellular calcium ion concentrations evoked by 0.1 U/mL thrombin. These effects of the NCX inhibitors are in striking contrast to those of protein kinase C inhibitor, Ro31-8220. Biochemical and ultrastructural analyses showed that NCX inhibitors, particularly DCB, made platelets “thrombasthenic”. These findings suggest that the NCX is involved in the common steps of inside-out signaling through integrin IIbβ3.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1998-10-15
    Description: To clarify a molecular defect responsible for moderate IIbβ3 deficiency, we examined two unrelated patients, MT and MS, suffering from type II and type I Glanzmann thrombasthenia (GT), respectively. Sequence analysis of polymerase chain reaction (PCR) fragments derived from platelet mRNA showed a single A→C substitution at nucleotide (nt) 2334 leading to a Gln747→ Pro in IIb in both patients. Allele-specific restriction enzyme analysis (ASRA) of genomic DNA demonstrated that patient MT was homozygous for the Gln747→Pro substitution and patient MS was compound heterozygous for this substitution and for an RNA splice mutation at the consensus sequence of the splice acceptor site of exon 18 (AG→AA). Furthermore, ASRA showed that, among 17 unrelated Japanese GT patients, this Gln747→Pro substitution was detected in 4 patients, including MT and MS (homozygous, 2 patients; heterozygous, 2 patients). Cotransfection of Pro747IIb and β3 constructs into 293 cells resulted in moderate reduction in the amount of IIbβ3 within the transfected cells as well as on the cell surface. However, Pro747IIbβ3 bound the ligand mimetic monoclonal antibody (MoAb) PAC-1 after activation of IIbβ3 by the MoAb PT25-2, suggesting that the mutant IIbβ3 possesses the ligand-binding function. The association between the mutant proIIb and β3 was not disturbed. Surface labeling and pulse chase study showed that the Gln747→Pro substitution moderately impaired both intracellular transport of the IIbβ3 heterodimers to the Golgi apparatus and endoproteolytic cleavage of proIIb into heavy and light chains. By contrast, replacement of Gln747 with Ala by mutagenesis did not impair IIbβ3expression on the cell surface. These results suggest that the presence of Pro, rather than the absence of Gln, at amino acid residue 747 on IIb is responsible for moderate IIbβ3 deficiency. © 1998 by The American Society of Hematology.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1998-11-15
    Description: Platelet IIbβ3 is a prototypic integrin and plays a critical role in platelet aggregation. Occupancy of IIbβ3 with multivalent RGD ligands, such as fibrinogen, induces both expression of ligand-induced binding sites (LIBS) and IIbβ3 clustering, which are thought to be necessary for outside-in signaling. However, the association between LIBS expression and outside-in signaling remains elusive. In this study, we used various IIbβ3-specific peptidomimetic compounds as a monovalent ligand instead of fibrinogen and examined the association between LIBS expression and outside-in signaling such as IIbβ3-mediated intracellular Ca2+ signaling. Using a set of monoclonal antibodies (MoAbs) against LIBS, we showed that antagonists can be divided into two groups. In group I, antagonists can induce LIBS on both IIb and β3 subunits. In group II, antagonists can induce LIBS on the IIb subunit, but not on the β3 subunit. Inhibition studies suggested that group I and group II antagonists interact with distinct but mutually exclusive sites on IIbβ3. Neither group I nor group II antagonist increased intracellular Ca2+concentrations ([Ca2+]i) in nonactivated platelets. All antagonists at nanomolar concentrations abolished the increase in [Ca2+]i in 0.03 U/mL thrombin-stimulated platelets, which is dependent on both fibrinogen-binding to IIbβ3 and platelet-aggregation. However, only group I antagonists at higher concentrations dose-dependently augmented the [Ca2+]i increase, which is due to aggregation-independent thromboxane A2 production. This increase in [Ca2+]i was not observed in thrombasthenic platelets, which express no detectable IIbβ3. Thus, only the group I antagonists, albeit a monovalent ligand, can initiate IIbβ3-mediated intracellular Ca2+ signaling in the presence of thrombin stimulation. Our findings strongly suggest the association between β3LIBS expression and IIbβ3-mediated intracellular Ca2+ signaling in platelets.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1998-03-15
    Description: The Philadelphia (Ph1) chromosome can be detected in chronic myelogenous leukemia (CML) and a significant number of acute lymphoblastic leukemia (ALL) cases. Generation of p210bcr/abl, a chimeric protein with enhanced kinase activity, is thought to be involved in the pathogenesis of these diseases. To elucidate the biological properties of p210bcr/abl and to create an animal model for human Ph1-positive leukemias, we generated transgenic mice expressing p210bcr/abl driven by the promoter of the tec gene, a cytoplasmic tyrosine-kinase preferentially expressed in the hematopoietic lineage. The founder mice showed excessive proliferation of lymphoblasts shortly after birth and were diagnosed as suffering from ALL based on surface marker and Southern blot analyses. Expression and enhanced kinase activity of the p210bcr/abl transgene product were detected in the leukemic tissues. In contrast, transgenic progeny exhibited marked granulocyte hyperplasia with thrombocytosis after a long latent period and developed myeloproliferative disorders (MPDs) closely resembling human CML. Expression of p210bcr/abl mRNA in the proliferating granulocytes was detected by RT-PCR. In particular, one MPD mouse showed remarkable proliferation of blast cells in the lung, which might represent an extramedullar blast crisis. The results demonstrate that the expression of p210bcr/abl in hematopoietic progenitor cells in transgenic mice can contribute to two clinically distinct hematopoietic malignancies, CML and ALL, indicating that this transgenic system provides a novel transgenic model for human Ph1-positive leukemias.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1998-03-15
    Description: The Philadelphia (Ph1) chromosome can be detected in chronic myelogenous leukemia (CML) and a significant number of acute lymphoblastic leukemia (ALL) cases. Generation of p210bcr/abl, a chimeric protein with enhanced kinase activity, is thought to be involved in the pathogenesis of these diseases. To elucidate the biological properties of p210bcr/abl and to create an animal model for human Ph1-positive leukemias, we generated transgenic mice expressing p210bcr/abl driven by the promoter of the tec gene, a cytoplasmic tyrosine-kinase preferentially expressed in the hematopoietic lineage. The founder mice showed excessive proliferation of lymphoblasts shortly after birth and were diagnosed as suffering from ALL based on surface marker and Southern blot analyses. Expression and enhanced kinase activity of the p210bcr/abl transgene product were detected in the leukemic tissues. In contrast, transgenic progeny exhibited marked granulocyte hyperplasia with thrombocytosis after a long latent period and developed myeloproliferative disorders (MPDs) closely resembling human CML. Expression of p210bcr/abl mRNA in the proliferating granulocytes was detected by RT-PCR. In particular, one MPD mouse showed remarkable proliferation of blast cells in the lung, which might represent an extramedullar blast crisis. The results demonstrate that the expression of p210bcr/abl in hematopoietic progenitor cells in transgenic mice can contribute to two clinically distinct hematopoietic malignancies, CML and ALL, indicating that this transgenic system provides a novel transgenic model for human Ph1-positive leukemias.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...