ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] When normal mouse peritoneal cells were cultured in methyl-cellulose medium containing pokeweed mitogen-stimulated spleen-cell-conditioned medium (PWMSCM), pure mast-cell colonies developed14. Detailed histochemical analyses of individual mast-cell colonies, together with observations of colony ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 139 (1989), S. 647-653 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: In this study, the authors propose a stochastic model for multipotent hemopoietic progenitor differentiation, which assumes that there is a fixed probability (P) that a progenitor with a potential for differentiation along a particular lineage maintains the potential in each cell division in each daughter cell, and this differentiation process of each lineage proceeds independently. To examine the applicability of this model, a sequential micromanipulation of paired progenitors was carried out and followed by cytological examination of the cells contained in the colonies derived from these progenitors; then calculation was made of the ratio of the number of paired colonies containing cell(s) with a particular lineage to the number of paired colonies in which only one colony contained cell(s) with the lineage at the first and second cell division. The ratios were similar at the first and second cell division within each lineage. Furthermore, the frequences of each lineage in multilineage hemopoietic colonies were calculated using the P values obtained from these micromanipulation experiments. The expected frequencies were similar to those in the actual experiments. These results suggested that the stochastic model was applicable to multipotent hemopoietic progenitor differentiation.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 148 (1991), S. 362-369 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Recently, a novel cytokine designated stem cell factor (SCF) was isolated from medium conditioned by buffalo rat liver cells and proved to be the ligand for c-kit. We have examined the effects of recombinant rat SCF alone and in various combinations with interleukin-3 and interleukin-4 on murine mast cell colony formation in methylcellulose culture. As a source of connective tissue-type mast cells (CTMC), we used peritoneal mast cells. No individual factor supported colony formation by purified peritoneal mast cells. When cells were grown in combinations of two factors, significant mast cell colony growth was seen. When cells were grown in the presence of three factors, not only the number of colonies was increased but also the colonies were larger. Mast cells in these colonies contained safranin- and berberine sulfate-positive cells, but the proportions of positive and negative cells varied depending on the factor combinations. We then examined the effects of these factors on proliferation of bone marrow-derived mast cells (BMMC) by replating pooled mast cell colonies. As a single factor, only interleukin-3 supported mast cell colony formation. Combinations of two of the three factors supported mast cell colony formation. However, the most impressive synergism was seen again with the combination of the three factors. Not only was the number of colonies increased, but there was a significant increase in size. These results indicate that SCF is an important factor for the proliferation of both CTMC and BMMC.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2009-05-10
    Print ISSN: 1550-8943
    Electronic ISSN: 1558-6804
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2009-08-26
    Print ISSN: 1550-8943
    Electronic ISSN: 1558-6804
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2002-11-01
    Description: To establish a more appropriate animal recipient for xenotransplantation, NOD/SCID/γcnull mice double homozygous for the severe combined immunodeficiency (SCID) mutation and interleukin-2Rγ (IL-2Rγ) allelic mutation (γcnull) were generated by 8 backcross matings of C57BL/6J-γcnull mice and NOD/Shi-scidmice. When human CD34+ cells from umbilical cord blood were transplanted into this strain, the engraftment rate in the peripheral circulation, spleen, and bone marrow were significantly higher than that in NOD/Shi-scid mice treated with anti-asialo GM1 antibody or in the β2-microglobulin–deficient NOD/LtSz-scid (NOD/SCID/β2mnull) mice, which were as completely defective in NK cell activity as NOD/SCID/γcnull mice. The same high engraftment rate of human mature cells was observed in ascites when peripheral blood mononuclear cells were intraperitoneally transferred. In addition to the high engraftment rate, multilineage cell differentiation was also observed. Further, even 1 × 102 CD34+ cells could grow and differentiate in this strain. These results suggest that NOD/SCID/γcnull mice were superior animal recipients for xenotransplantation and were especially valuable for human stem cell assay. To elucidate the mechanisms involved in the superior engraftment rate in NOD/SCID/γcnull mice, cytokine production of spleen cells stimulated with Listeria monocytogenesantigens was compared among these 3 strains of mice. The interferon-γ production from dendritic cells from the NOD/SCID/γcnull mouse spleen was significantly suppressed in comparison with findings in 2 other strains of mice. It is suggested that multiple immunological dysfunctions, including cytokine production capability, in addition to functional incompetence of T, B, and NK cells, may lead to the high engraftment levels of xenograft in NOD/SCID/γcnull mice.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1999-04-15
    Description: We have recently shown that stimulation of glycoprotein (gp) 130, the membrane-anchored signal transducing receptor component of IL-6, by a complex of human soluble interleukin-6 receptor (sIL-6R) and IL-6 (sIL-6R/IL-6), potently stimulates the ex vivo expansion as well as erythropoiesis of human stem/progenitor cells in the presence of stem cell factor (SCF). Here we show that sIL-6R dose-dependently enhanced the generation of megakaryocytes (Mks) (IIbIIIa-positive cells) from human CD34+ cells in serum-free suspension culture supplemented with IL-6 and SCF. The sIL-6R/IL-6 complex also synergistically acted with IL-3 and thrombopoietin (TPO) on the generation of Mks from CD34+ cells, whereas the synergy of IL-6 alone with TPO was barely detectable. Accordingly, the addition of sIL-6R to the combination of SCF + IL-6 also supported a substantial number of Mk colonies from CD34+ cells in serum-free methylcellulose culture, whereas SCF + IL-6 in the absence of sIL-6R rarely induced Mk colonies. The addition of monoclonal antibodies against gp130 to the suspension and clonal cultures completely abrogated the megakaryopoiesis induced by sIL-6R/IL-6 in the presence of SCF, whereas an anti-TPO antibody did not, indicating that the observed megakaryopoiesis by sIL-6R/IL-6 is a response to gp130 signaling and independent of TPO. Furthermore, human CD34+ cells were subfractionated into two populations of IL-6R–negative (CD34+ IL-6R−) and IL-6R–positive (CD34+ IL-6R+) cells by fluorescence-activated cell sorting. The CD34+IL-6R− cells produced a number of Mks as well as Mk colonies in cultures supplemented with sIL-6R/IL-6 or TPO in the presence of SCF. In contrast, CD34+ IL-6R+cells generated much less Mks and lacked Mk colony forming activity under the same conditions. Collectively, the present results indicate that most of the human Mk progenitors do not express IL-6R, and that sIL-6R confers the responsiveness of human Mk progenitors to IL-6. Together with the presence of functional sIL-6R in human serum and relative unresponsiveness of human Mk progenitors to IL-6 in vitro, current results suggest that the role of IL-6 may be mainly mediated by sIL-6R, and that the gp130 signaling initiated by the sIL-6R/ IL-6 complex is involved in human megakaryopoiesis in vivo.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1998-09-15
    Description: We report here on a novel stromal cell line, AGM-S3, derived from the aorta-gonad-mesonephros (AGM) region of a 10.5 days postcoitum (dpc) mouse embryo. The AGM-S3 cells promoted production of hematopoietic progenitors and day-12 spleen colony-forming cells from Lin−c-Kit+Sca-1+ murine primitive hematopoietic cells. They also supported for 6 weeks generation of human multipotential progenitors from cord blood CD34+CD38− primitive hematopoietic cells. Human long-term repopulating hematopoietic stem cells (LTR-HSC) with the potential to reconstitute hematopoiesis in NOD/SCID mice were maintained on AGM-S3 cells for at least 4 weeks. Flow cytometric analysis showed that CD13, vascular cellular adhesion molecule-1, and Sca-1 were expressed on AGM-S3 cells. Because stem cell factor, interleukin-6 (IL-6), and oncostatin M, but not IL-3, IL-11, leukemia- inhibitory factor, granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor, thrombopoietin, and Flk2 ligand were detected in reverse transcription-polymerase chain reaction analysis of AGM-S3 cells, the cells seem to express species-cross reactive molecule(s) other than the cytokines examined and which act on primitive hematopoietic progenitor/stem cells. This cell line is expected to elucidate molecular mechanisms regulating early hematopoiesis and pave the way for developing strategies for expansion of human transplantable HSC. © 1998 by The American Society of Hematology.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1997-12-01
    Description: We recently showed that c-kit signal synergizes with glycoprotein (gp)130 signal mediated by a complex of interleukin (IL)-6 and soluble IL-6 receptor (IL-6/sIL-6R) to stimulate the expansion of human primitive hematopoietic progenitor cells and erythropoietin-independent erythropoiesis. In the present study, we examined the effect of a ligand for Flt3 (FL), whose receptor tyrosine kinase is closely related to c-kit, in combination with IL-6/sIL-6R on human hematopoiesis in vitro. In serum-containing methylcellulose clonal culture of cord blood CD34+ cells, whereas FL alone stimulated only granulocyte-macrophage (GM) colony formation, erythroid bursts and mixed colonies in addition to GM colonies were induced by FL with IL-6/sIL-6R, but not IL-6/sIL-6R alone. In suspension culture, CD34+ cells generated a small number of myeloid cells in the presence of FL or IL-6/sIL-6R alone. However, the addition of IL-6/sIL-6R to the culture with FL induced the generation of a significant number of erythroid cells and megakaryocytes in addition to myeloid cells. The combination of FL and IL-6/sIL-6R also induced a remarkable expansion of GM colony- and erythroid burst-forming cells and multipotential progenitors, although FL or IL-6/sIL-6R alone induced the generation of only a small number of progenitors for GM colonies. The synergistic effects of FL and IL-6/sIL-6R were confirmed in serum-free clonal and suspension cultures. In addition, the addition of anti-human gp130 monoclonal antibodies abrogated the synergistic action. These results indicate that Flt3 signal, as well as c-kit signal, synergizes with gp130 signal to stimulate human myelopoiesis, erythropoiesis and megakaryopoiesis, and the expansion of primitive multipotential hematopoietic progenitor cells.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2004-11-16
    Description: BACKGROUND: JMML is a clonal myeloprolifelative/myelodysplastic disorder of early childhood. The mortality rate in JMML patients is high, but so far, stem cell transplantation is the only therapy capable of producing durable remissions. JMML cells are characterized by the ability to spontaneously proliferate in vitro, giving rise to granulocyte-macrophage (GM) colonies. Deregulation of the GM-CSF receptor-RAS signal transduction pathway is thought to play a key role in the pathogenesis. Therefore, putative RAS-blocking compounds can be potential inhibitors for JMML cells. ZOL, the third generation bisphosphonate, is known to not only treat bone diseases but also act as an antiproliferative drug for some cancers by inhibiting the activation of RAS-related proteins. We then investigated the effect of ZOL on JMML cell growth in vitro. METHODS: After obtaining informed consent, bone marrow (BM) samples were obtained from children with JMML or normal healthy volunteers. The diagnosis of JMML was based on criteria of the international JMML Working Group, and confirmed by the demonstration of spontaneous colony formation, most of which were GM colonies consisting of both macrophages and granulocytes. In methylcellulose clonal and suspension cultures, BM non-adherent mononuclear cells (2 x 104 cells/mL) in the absence or presence of GM-CSF (10 ng/mL) were exposed to 0, 1, 10 and 100 μM of ZOL. In the former, colonies (〉40 cells) were counted on days 12 to 14 of culture, and the cellular composition of each colony was analyzed on cytospin smears cytochemically stained. In the latter, the determination of number of cultured cells and their cellular composition by the microscopic observation and flow cytometry was carried out on days 0, 5, 10 and 15. FINDINGS: 8 JMML children were enrolled in this study. In clonal culture, ZOL did not affect the spontaneous colony formation by JMML cells at 1 μM, but reduced it at 10 μM. Few colonies were produced at 100 μM. Interestingly, the colonies formed at more than 10 μM ZOL contained a number of smaller colonies consisting of only granulocytes, but no macrophages. Furthermore, the size of bipotential GM colonies was smaller and the percentage of macrophages included in each colony was fewer at the concentrations of ZOL. On the other hand, ZOL had no effect on the colony formation induced by GM-CSF from normal BM cells at up to 10 μM, whereas few colonies were observed at 100 μM as well as spontaneous colony formation by JMML cells. In suspension culture, 10 μM ZOL also inhibited the spontaneous proliferation and differentiation on monocyte/macrophage lineage of JMML cells, but not the development of normal BM cells induced by GM-CSF. INTERPRETATION: The inhibitory effects of ZOL on the abnormal proliferation and differentiation of JMML cells may offer an approach to therapy in JMML.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...