ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1994-06-24
    Description: Two ternary complexes of rat DNA polymerase beta (pol beta), a DNA template-primer, and dideoxycytidine triphosphate (ddCTP) have been determined at 2.9 A and 3.6 A resolution, respectively. ddCTP is the triphosphate of dideoxycytidine (ddC), a nucleoside analog that targets the reverse transcriptase of human immunodeficiency virus (HIV) and is at present used to treat AIDS. Although crystals of the two complexes belong to different space groups, the structures are similar, suggesting that the polymerase-DNA-ddCTP interactions are not affected by crystal packing forces. In the pol beta active site, the attacking 3'-OH of the elongating primer, the ddCTP phosphates, and two Mg2+ ions are all clustered around Asp190, Asp192, and Asp256. Two of these residues, Asp190 and Asp256, are present in the amino acid sequences of all polymerases so far studied and are also spatially similar in the four polymerases--the Klenow fragment of Escherichia coli DNA polymerase I, HIV-1 reverse transcriptase, T7 RNA polymerase, and rat DNA pol beta--whose crystal structures are now known. A two-metal ion mechanism is described for the nucleotidyl transfer reaction and may apply to all polymerases. In the ternary complex structures analyzed, pol beta binds to the DNA template-primer in a different manner from that recently proposed for other polymerase-DNA models.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pelletier, H -- Sawaya, M R -- Kumar, A -- Wilson, S H -- Kraut, J -- CA17374/CA/NCI NIH HHS/ -- ES06839/ES/NIEHS NIH HHS/ -- GM10928/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Jun 24;264(5167):1891-903.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of California, San Diego 92093-0317.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7516580" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; DNA/chemistry/metabolism ; DNA Polymerase I/*chemistry/metabolism ; DNA Primers/*chemistry/metabolism ; DNA-Directed RNA Polymerases/chemistry/metabolism ; Deoxycytosine Nucleotides/*chemistry/metabolism ; Dideoxynucleotides ; HIV Reverse Transcriptase ; Humans ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; RNA-Directed DNA Polymerase/chemistry/metabolism ; Rats ; Recombinant Proteins ; Templates, Genetic ; Thymine Nucleotides/chemistry/metabolism ; Viral Proteins ; Zidovudine/analogs & derivatives/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1994-04-01
    Description: The crystal structure of a complex between a 24-amino acid peptide from the third variable (V3) loop of human immunodeficiency virus-type 1 (HIV-1) gp 120 and the Fab fragment of a broadly neutralizing antibody (59.1) was determined to 3 angstrom resolution. The tip of the V3 loop containing the Gly-Pro-Gly-Arg-Ala-Phe sequence adopts a double-turn conformation, which may be the basis of its conservation in many HIV-1 isolates. A complete map of the HIV-1 principal neutralizing determinant was constructed by stitching together structures of V3 loop peptides bound to 59.1 and to an isolate-specific (MN) neutralizing antibody (50.1). Structural conservation of the overlapping epitopes suggests that this biologically relevant conformation could be of use in the design of synthetic vaccines and drugs to inhibit HIV-1 entry and virus-related cellular fusion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ghiara, J B -- Stura, E A -- Stanfield, R L -- Profy, A T -- Wilson, I A -- GM-46192/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Apr 1;264(5155):82-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Scripps Research Institute, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7511253" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antibodies, Monoclonal/chemistry/immunology ; Antigen-Antibody Complex/*chemistry/immunology ; Antigen-Antibody Reactions ; Computer Graphics ; Crystallography, X-Ray ; Epitopes/chemistry/immunology ; HIV Antibodies/*chemistry/immunology ; HIV Envelope Protein gp120/*chemistry/immunology ; HIV-1/*chemistry/immunology ; Hydrogen Bonding ; Immunoglobulin Fab Fragments/*chemistry/immunology ; Models, Molecular ; Molecular Sequence Data ; Neutralization Tests ; Peptide Fragments/*chemistry/immunology ; Protein Conformation ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1994-01-14
    Description: Isoniazid (isonicotinic acid hydrazide, INH) is one of the most widely used antituberculosis drugs, yet its precise target of action on Mycobacterium tuberculosis is unknown. A missense mutation within the mycobacterial inhA gene was shown to confer resistance to both INH and ethionamide (ETH) in M. smegmatis and in M. bovis. The wild-type inhA gene also conferred INH and ETH resistance when transferred on a multicopy plasmid vector to M. smegmatis and M. bovis BCG. The InhA protein shows significant sequence conservation with the Escherichia coli enzyme EnvM, and cell-free assays indicate that it may be involved in mycolic acid biosynthesis. These results suggest that InhA is likely a primary target of action for INH and ETH.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Banerjee, A -- Dubnau, E -- Quemard, A -- Balasubramanian, V -- Um, K S -- Wilson, T -- Collins, D -- de Lisle, G -- Jacobs, W R Jr -- AI27160/AI/NIAID NIH HHS/ -- UO1AI30189/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1994 Jan 14;263(5144):227-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, NY 10461.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8284673" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/chemistry/*genetics ; Base Sequence ; Cloning, Molecular ; Drug Resistance, Microbial/*genetics ; Ethionamide/metabolism/*pharmacology ; *Genes, Bacterial ; Isoniazid/metabolism/*pharmacology ; Molecular Sequence Data ; Mutation ; Mycobacterium/drug effects/genetics ; Mycobacterium bovis/drug effects/genetics ; Mycobacterium tuberculosis/chemistry/drug effects/*genetics/metabolism ; Mycolic Acids/metabolism ; Open Reading Frames ; *Oxidoreductases ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...