ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for the Advancement of Science (AAAS)  (1)
  • 1990-1994  (1)
  • 1994  (1)
  • 1
    Publication Date: 1994-09-16
    Description: Sodium ion (Na+) channels, which initiate the action potential in electrically excitable cells, are the molecular targets of local anesthetic drugs. Site-directed mutations in transmembrane segment S6 of domain IV of the Na+ channel alpha subunit from rat brain selectively modified drug binding to resting or to open and inactivated channels when expressed in Xenopus oocytes. Mutation F1764A, near the middle of this segment, decreased the affinity of open and inactivated channels to 1 percent of the wild-type value, resulting in almost complete abolition of both the use-dependence and voltage-dependence of drug block, whereas mutation N1769A increased the affinity of the resting channel 15-fold. Mutation I1760A created an access pathway for drug molecules to reach the receptor site from the extracellular side. The results define the location of the local anesthetic receptor site in the pore of the Na+ channel and identify molecular determinants of the state-dependent binding of local anesthetics.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ragsdale, D S -- McPhee, J C -- Scheuer, T -- Catterall, W A -- P01-HL44948/HL/NHLBI NIH HHS/ -- R01-NS15751/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1994 Sep 16;265(5179):1724-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Washington, Seattle 98195.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8085162" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Anesthetics, Local/metabolism/*pharmacology ; Animals ; Binding Sites ; Etidocaine/metabolism/*pharmacology ; Lidocaine/analogs & derivatives/metabolism/pharmacology ; Mutagenesis, Site-Directed ; Oocytes ; Rats ; Sodium Channels/chemistry/*drug effects/genetics/metabolism ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...