ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Polymer and Materials Science  (3)
  • Wiley-Blackwell  (3)
  • American Association for the Advancement of Science (AAAS)
  • American Chemical Society
  • 1990-1994  (3)
  • 1935-1939
  • 1992  (3)
Collection
Publisher
  • Wiley-Blackwell  (3)
  • American Association for the Advancement of Science (AAAS)
  • American Chemical Society
Years
  • 1990-1994  (3)
  • 1935-1939
Year
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 30 (1992), S. 1589-1600 
    ISSN: 0887-624X
    Keywords: reactivity ; amines ; functional polymers ; anhydride ; carbonxylic acid ; crosslink ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Reactive melt processing of different types of diamines with polyethylene containing carboxylic acid groups and polystyrene containing anhydride groups was carried out. The reactivity of primary, secondary, and tertiary diamines with these acid polymers was determined using various techniques. Molecular weight increases due to crosslinking were observed through (1) changes in the torque during the reactive processing, (2) decrease in melt flow indices, and (3) decrease in solubility of the reaction products. The chemical compositions of the reaction products were examined by Fourier transform infrared (FTIR) spectroscopy. Thermal analysis using differential scanning calorimetry (DSC) was carried out to determine the crystallization behavior, glass transition temperatures, and thermal stabilities of the reaction products. Results show that the primary amine is the most reactive towards carboxylic acid or anhydride groups followed by the secondary and then the tertiary amine. Anhydride groups on polymers are of higher activity towards secondary or primary amino groups than carboxylic acid groups in the nucleophilic acyl substitution reactions. Reaction products crosslinked with the primary diamine are less stable than their parent acidic polymers. On the other hand, crosslinking with the secondary or tertiary diamine gives products with higher thermal stability than the parent acidic polymers. The formation of reversible and irreversible crosslinks with different types of diamines is also reported. © 1992 John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 44 (1992), S. 2167-2177 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Blends of a styrene-maleic anhydride copolymer (SMA) with polyethlene (PE) or polyethylene melt grafted with tertiary (PE-g-DMAEMA) or secondary (PE-g-tBAEMA) amino methacrylate were prepared by blending in a batch melt mixer. The morphology of these blends at various compositions was examined with a scanning electron microscope (SEM) and related to their tensile and impact properties. The SMA/PE blends are found to have the typical coarse morphology of incompatible blends and poor mechanical properties, while their reactive conterparts, SMA/PE-g-DMAEMA or SMA/PE-g-tBAEMA blends, show finer morphology and modestly improved tensile and impact strength. This was attributed to chemical interaction of the acidic anhydride and the basic amino groups. The greater improvement in morphology for SMA/PE-g-tBAEMA than for SMA/PE-g-DMAEMA suggests a stronger interaction between the secondary amino groups and the anhydride groups, possibly with the formation of SMA-g-tBAEMA-g-PE graft polymer through amide covalent bonds. The amide formation appears to occur at the interfacial region in the blends and is too little to be detected by Fourier transform infrared (FTIR) spectra. However, differential scanning calorimeters (DSC) and the viscosity measurements indicate crystallinity and molecular weight changes for the SMA/PE-g-tBAEMA blends, supporting an argument for the formation of SMA-g-tBAEMA-g-PE grafts at the phase interface.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0730-6679
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Blending of immiscible polymers offers attractive opportunities for developing new materials with useful combinations of properties. However, simple blends often have poor mechanical properties and unstable morphologies. Compatibilization of such blends is necessary. Preformed graft or block copolymers have been traditionally added to act as compatibilizers. Another route, however, is to generate these copolymer compatibilizers in situ during melt blending using functionalized polymers. In this review, a variety of reactive polymers that have been utilized in the reactive compatibilization of polymer blends is examined. They are classified into six major categories according to the types of reactive groups they have, namely, maleic anhydride, carboxylic acids, carboxylic acid derivatives, primary and secondary amines, hydroxyl and epoxide, and reactive groups capable of ionic bonding. Their preparation methods and applications and the chemical reactions they undergo during melt blending are presented. © 1992 John Wiley & Sons, Inc.
    Additional Material: 8 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...