ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Launch Vehicles and Launch Operations  (11)
  • COMPOSITE MATERIALS
  • STRUCTURAL MECHANICS
  • 2005-2009  (11)
  • 1990-1994  (7)
  • 1960-1964
  • 2008  (11)
  • 1992  (7)
  • 1
    Publication Date: 2013-08-31
    Description: The objective of this paper is to describe current results from an on-going study of the mechanisms that led to the failure of the TIBB. Experimental and analytical results are presented. Experimental results include load, strain, and deflection data for the TIBB (Technology Integration Box Beam). An analytical investigation was conducted to compliment the experimental investigation and to gain additional insight into the TIBB structural response. Analytical results include strain and deflection results from a global analysis of the TIBB. A local analysis of the failure region is being completed. These analytical results are validated through comparisons with the experimental results from the TIBB tests. The experimental and analytical results from the TIBB tests are used to determine a sequence of events that may have resulted in failure of the TIBB. A potential cause of failure is high stresses in a stiffener runout region. Typical analytical results are presented for a stiffener runout specimen that is being defined to simulate the TIBB failure mechanisms. The results of this study are anticipated to provide better understanding of potential failure mechanisms in composite aircraft structures, to lead to future design improvements, and to identify needed analytical tools for design and analysis.
    Keywords: STRUCTURAL MECHANICS
    Type: FAA, Ninth DOD(NASA)FAA Conference on Fibrous Composites in Structural Design, Volume 2; p 673-68
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-29
    Description: Composite structures have the potential to be cost effective, structurally efficient primary aircraft structures. As part of the Advanced Composite Technology (ACT) program to exploit this potential for heavily loaded aircraft structures, the design and fabrication of the technology integration box beam (TIBB) was completed. The TIBB is an advanced composite prototype structure for the center wing section of the Lockheed C-130 aircraft. The TIBB was tested for downbending, upbending, torsion, and combined upbending and torsion load conditions to verify the design. The TIBB failed at 83 percent of design ultimate load for the combined upbending and torsion load condition. Current analytical and experimental results are described for a study of the mechanisms that led to the failure of the TIBB. Experimental results include load, strain, and deflection data. An analytical study was conducted of the TIBB structural response. Analytical results include strain and deflection results from a global analysis of the TIBB.
    Keywords: COMPOSITE MATERIALS
    Type: Second NASA Advanced Composites Technology Conference; p 99-111
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: The role of equation solvers in modern structural analysis software is described. Direct and iterative equation solvers which exploit vectorization on modern high-performance computer systems are described and compared. The direct solvers are two Cholesky factorization methods. The first method utilizes a novel variable-band data storage format to achieve very high computation rates and the second method uses a sparse data storage format designed to reduce the number od operations. The iterative solvers are preconditioned conjugate gradient methods. Two different preconditioners are included; the first uses a diagonal matrix storage scheme to achieve high computation rates and the second requires a sparse data storage scheme and converges to the solution in fewer iterations that the first. The impact of using all of the equation solvers in a common structural analysis software system is demonstrated by solving several representative structural analysis problems.
    Keywords: STRUCTURAL MECHANICS
    Type: International Journal for Numerical Methods in Engineering (ISSN 0029-5981); 33; 855-868
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: NASA's Advanced Composites Program (ACT) was initiated in 1988. A National Research Announcement was issued to solicit innovative ideas that could significantly contribute to development and demonstration of an integrated technology data base and confidence level that permits cost-effective use of composite primary structures in transport aircraft. Fifteen contracts were awarded by the Spring of 1989 and the participants include commercial and military airframe manufacturers, materials developers and suppliers, universities, and government laboratories. The program approach is to develop materials, structural mechanics methodology, design concepts, and fabrication procedures that offer the potential to make composite structures cost-effective compared to aluminum structure. Goals for the ACT program included 30-50 percent weight reduction, 20-25 percent acquisition cost reduction, and provided the scientific basis for predicting materials and structures performance. This paper provides an overview of the ACT program status, plans, and selected technical accomplishments. Sixteen additional papers, which provide more detailed information on the research and development accomplishments, are contained in this publication.
    Keywords: COMPOSITE MATERIALS
    Type: FAA, Ninth DOD(NASA)FAA Conference on Fibrous Composites in Structural Design, Volume 2; p 577-59
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-13
    Description: All structural systems possess a basic set of physical characteristics unique to that system. These unique physical characteristics include items such as mass distribution and damping. When specified, they allow engineers to understand and predict how a structural system behaves under given loading conditions and different methods of control. These physical properties of launch vehicles may be predicted by analysis or measured by certain types of tests. Generally, these properties are predicted by analysis during the design phase of a launch vehicle and then verified by testing before the vehicle becomes operational. A ground vibration test (GVT) is intended to measure by test the fundamental dynamic characteristics of launch vehicles during various phases of flight. During the series of tests, properties such as natural frequencies, mode shapes, and transfer functions are measured directly. These data will then be used to calibrate loads and control systems analysis models for verifying analyses of the launch vehicle. NASA manned launch vehicles have undergone ground vibration testing leading to the development of successful launch vehicles. A GVT was not performed on the inaugural launch of the unmanned Delta III which was lost during launch. Subsequent analyses indicated had a GVT been performed, it would have identified instability issues avoiding loss of the vehicle. This discussion will address GVT planning, set-up, execution and analyses, for the Saturn and Shuttle programs, and will also focus on the current and on-going planning for the Ares I and V Integrated Vehicle Ground Vibration Test (IVGVT).
    Keywords: Launch Vehicles and Launch Operations
    Type: MSFC-826 , Joint Army-Navy-NASA-Air Force (JANNAF) Conference; May 12, 2008 - May 16, 2008; Massachusetts; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-13
    Description: The National Aeronautics and Space Administration (NASA) Ares Projects Office (APO) is continuing to make progress toward the final design of the Ares I crew launch vehicle and Ares V cargo launch vehicle. Ares I and V will form the space launch capabilities necessary to fulfill NASA's exploration strategy of sending human beings to the Moon, Mars, and beyond. As with all new space vehicles there will be a number of tests to ensure the design can be Human Rated. One of these is the Integrated Vehicle Ground Vibration Test (IVGVT) that will be measuring responses of the Ares I as a system. All structural systems possess a basic set of physical characteristics unique to that system. These unique characteristics include items such as mass distribution, frequency and damping. When specified, they allow engineers to understand and predict how a structural system like the Ares I launch vehicle behaves under given loading conditions. These physical properties of launch vehicles may be predicted by analysis or measured through certain types of tests. Generally, these properties are predicted by analysis during the design phase of a launch vehicle and then verified through testing before the vehicle is Human Rated. The IVGVT is intended to measure by test the fundamental dynamic characteristics of Ares I during various phases of operational/flight. This testing includes excitations of the vehicle in lateral, longitudinal, and torsional directions at vehicle configurations representing different trajectory points. During the series of tests, properties such as natural frequencies, mode shapes, and transfer functions are measured directly. These data will then be used to calibrate loads and Guidance, Navigation, and Controls (GN&C) analysis models for verifying analyses of Ares I. NASA launch vehicles from Saturn to Shuttle have undergone Ground Vibration Tests (GVTs) leading to successful launch vehicles. A GVT was not performed on the unmanned Delta III. This vehicle was lost during launch. Subsequent analyses indicated that had a GVT been conducted on the vehicle, problems with vehicle modes and control may have been discovered and corrected, avoiding loss of the vehicle/mission. This paper will address GVT planning, set-up, conduction and analyses, for the Saturn and Shuttle programs, and also focus on the current and on-going planning for the Ares I and V IVGVT.
    Keywords: Launch Vehicles and Launch Operations
    Type: JANNAF 2008; May 12, 2008 - May 16, 2008; Newton, MA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-13
    Description: Ares I-X will be NASA's first test flight for a new human-rated launch vehicle since 1981, and the team is well on its way toward completing the vehicle's design and hardware fabrication for an April 2009 launch. This uncrewed suborbital development test flight gives NASA its first opportunities to: gather critical data about the flight dynamics of the integrated launch vehicle; understand how to control its roll during flight; better characterize the stage separation environments during future flight; and demonstrate the first stage recovery system. The Ares I-X Flight Test Vehicle (FTV) incorporates a mix of flight and mockup hardware. It is powered by a four-segment solid rocket booster, and will be modified to include a fifth, spacer segment; the upper stage, Orion crew exploration vehicle, and launch abort system are simulator hardware to make the FTV aerodynamically similar to the same size, shape, and weight of Ares I. The Ares IX first stage includes an existing Shuttle solid rocket motor and thrust vector control system controlled by an Ascent Thrust Vector Controller (ATVC) designed and built by Honeywell International. The avionics system will be tested in a dedicated System Integration Laboratory located at Lockheed Martin Space Systems (LMSS) in Denver, Colorado. The Upper Stage Simulator (USS) is made up of cylindrical segments that will be stacked and integrated at Kennedy Space Center (KSC) for launch. Glenn Research Center is already building these segments, along with their internal access structures. The active Roll Control System (RoCS) includes two thruster units harvested from Peacekeeper missiles. Duty cycle testing for RoCS was conducted, and fuel tanking and detanking tests will occur at KSC in early 2008. This important flight will provide valuable experience for the ground operations team in integrating, stacking, and launching Ares I. Data from Ares I-X will ensure the safety and reliability of America's newest launch vehicle.
    Keywords: Launch Vehicles and Launch Operations
    Type: Joint Army-Navy-NASA-Air Force (JANNAF)Conference; May 12, 2008 - May 16, 2008; Massachusetts; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The reliability of two graphite-epoxy stiffened panels that contain uncertainties is examined. For one panel, the effect of an overall bow-type initial imperfection is studied. The size of the bow is assumed to be a random variable. The failure mode is buckling. The benefits of quality control are explored by using truncated distributions. For the other panel, the effect of uncertainties in a strain-based failure criterion is studied. The allowable strains are assumed to be random variables. A geometrically nonlinear analysis is used to calculate a detailed strain distribution near an elliptical access hole in a wing panel that was tested to failure. Calculated strains are used to predict failure. Results are compared with the experimental failure load of the panel.
    Keywords: STRUCTURAL MECHANICS
    Type: NASA-TM-107687 , NAS 1.15:107687 , ATCOM-TR-92-B-015 , ASME Winter Annual Meeting: Symposium on Reliability Technology; Nov 08, 1992 - Nov 13, 1992; Anaheim, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: The influence of fiber waviness and matrix nonlinearity on the compressive behavior of continuous fiber composites is studied. A micromechanics model based on the kinematics of the fibers has been developed to predict the behavior of unidirectional composites with initially wavy fibers under compressive loads. The initial waviness has been idealized as sinusoidal. Nonlinear shear behavior of the matrix has been included. Because the shear strain in the matrix is a function of position, the deformed shape of the fibers differs from the initial shape. Therefore, the deformed fiber shape is represented by a sine series. Fiber waviness and matrix shear properties have been determined experimentally for T650-42/Radel C under several conditions. These experimental data have been used as input into the analytical model. Predicted compressive response is in reasonable agreement with experimental data.
    Keywords: COMPOSITE MATERIALS
    Type: Conference on Composite Materials: Testing and Design; Apr 24, 1990 - Apr 25, 1990; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: In less than two years, the National Aeronautics and Space Administration (NASA) will execute the Ares I-X mission. This will be the first flight of the Ares I crew launch vehicle; which, together with the Ares V cargo launch vehicle (Figure 1), will eventually send humans to the Moon, Mars, and beyond. As the countdown to this first Ares mission continues, personnel from across the Ares I-X Mission Management Office (MMO) are finalizing designs and, in some cases, already fabricating vehicle hardware in preparation for an April 2009 launch. This paper will discuss the hardware and programmatic progress of the Ares I-X mission.
    Keywords: Launch Vehicles and Launch Operations
    Type: 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit; Jul 20, 2008 - Jul 23, 2008; Hartford, CT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...