ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Amino Acids/metabolism  (2)
  • American Association for the Advancement of Science (AAAS)  (2)
  • 2000-2004  (2)
  • 1990-1994
  • 1940-1944
  • 2003  (2)
  • 1992
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (2)
Years
  • 2000-2004  (2)
  • 1990-1994
  • 1940-1944
Year
  • 2003  (2)
  • 1992
  • 1
    Publication Date: 2003-12-13
    Description: Even though human and chimpanzee gene sequences are nearly 99% identical, sequence comparisons can nevertheless be highly informative in identifying biologically important changes that have occurred since our ancestral lineages diverged. We analyzed alignments of 7645 chimpanzee gene sequences to their human and mouse orthologs. These three-species sequence alignments allowed us to identify genes undergoing natural selection along the human and chimp lineage by fitting models that include parameters specifying rates of synonymous and nonsynonymous nucleotide substitution. This evolutionary approach revealed an informative set of genes with significantly different patterns of substitution on the human lineage compared with the chimpanzee and mouse lineages. Partitions of genes into inferred biological classes identified accelerated evolution in several functional classes, including olfaction and nuclear transport. In addition to suggesting adaptive physiological differences between chimps and humans, human-accelerated genes are significantly more likely to underlie major known Mendelian disorders.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Clark, Andrew G -- Glanowski, Stephen -- Nielsen, Rasmus -- Thomas, Paul D -- Kejariwal, Anish -- Todd, Melissa A -- Tanenbaum, David M -- Civello, Daniel -- Lu, Fu -- Murphy, Brian -- Ferriera, Steve -- Wang, Gary -- Zheng, Xianqgun -- White, Thomas J -- Sninsky, John J -- Adams, Mark D -- Cargill, Michele -- New York, N.Y. -- Science. 2003 Dec 12;302(5652):1960-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14671302" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus/genetics ; Amino Acids/metabolism ; Animals ; Biological Evolution ; Computational Biology ; *Evolution, Molecular ; Female ; Genes ; Genetic Diseases, Inborn/genetics ; *Genome ; *Genome, Human ; Humans ; Likelihood Functions ; Male ; Mice/genetics ; Models, Genetic ; Models, Statistical ; Mutation ; Pan troglodytes/*genetics ; Phylogeny ; Proteins/chemistry/genetics ; Pseudogenes ; Receptors, Odorant/genetics ; *Selection, Genetic ; Sequence Alignment ; Sequence Homology, Nucleic Acid ; Signal Transduction/genetics ; Smell/genetics ; Species Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2003-01-25
    Description: Primary production in coastal wetlands is conventionally thought to be limited by nitrogen. Although the plant community in a pristine salt marsh was found to be limited primarily by nitrogen availability, the bacterial community in the soil was limited by phosphorus. Hence, in coastal wetlands, and possibly in many ecosystems, individual trophic groups may respond differently to nitrogen and phosphorus loading. Phosphorus limitation of the growth of nitrogen-transforming bacteria will affect carbon fixation, storage, and release mediated by plants, a result that has important implications for ecosystem management.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sundareshwar, P V -- Morris, J T -- Koepfler, E K -- Fornwalt, B -- New York, N.Y. -- Science. 2003 Jan 24;299(5606):563-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Marine Science Program, University of South Carolina, Columbia, SC 29208, USA. pvs@duke.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12543975" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acids/metabolism ; Bacteria/*growth & development/metabolism ; Biomass ; Carbon/metabolism ; Colony Count, Microbial ; *Ecosystem ; Geologic Sediments/microbiology ; Glucose/metabolism/pharmacology ; Nitrogen/*metabolism/pharmacology ; Nitrogen Fixation ; Nitrous Oxide/metabolism ; Phosphorus/*metabolism/pharmacology ; *Plant Development ; Plants/metabolism ; Soil Microbiology ; South Carolina ; Urea/metabolism ; Water Microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...