ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Gluconeogenesis  (1)
  • Life and Medical Sciences  (1)
  • BSSA
  • Chemistry
  • 1995-1999  (1)
  • 1990-1994  (1)
  • 1975-1979
  • 1998  (1)
  • 1992  (1)
Sammlung
Verlag/Herausgeber
Erscheinungszeitraum
  • 1995-1999  (1)
  • 1990-1994  (1)
  • 1975-1979
Jahr
  • 1
    ISSN: 1432-0983
    Schlagwort(e): Saccharomyces cerevisiae ; Fructose-1,6-bisphosphatase ; Glucose repression ; Gene activation ; Gluconeogenesis
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Summary Fructose-1,6-bisphosphatase is a key enzyme in gluconeogenesis and the FBP1 gene is not transcribed during growth with glucose. Genetic analysis indicated a positive regulation of FBP1 expression after exhaustion of glucose. By linker-deletion analysis, two upstream activation sites (UAS1 and UAS2) were localized and the respective UAS-binding factors (DAP I and DAP II for derepression activating protein) were identified by gel retardation. UAS1 and UAS2 span about 30 bp each, and are separated by approximately 30 bp. Both UAS sites act synergistically. Although UAS1 showed some similarities to the DNA-binding consensus for the general yeast activator Rap1, competition experiments and DEAE-chromatography proved that DAP I and Rap1 correspond to different proteins. Gel retardation by DAP I depended on carbon sources and did not occur in cells growing logarithmically with glucose, whereas a strong retardation signal was obtained with ethanol-grown cells. The present results suggest that DAP I and DAP II are the final regulatory elements for glucose derepression.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    New York, NY [u.a.] : Wiley-Blackwell
    Yeast 14 (1998), S. 1041-1050 
    ISSN: 0749-503X
    Schlagwort(e): Saccharomyces cerevisiae ; STRE ; stress response ; genomics ; bioinformatics ; Life and Medical Sciences ; Genetics
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie
    Notizen: Stress response elements (STREs, core consensus AG4 or C4T) have been demonstrated previously to occur in the upstream region of a number of genes responsive to induction by a variety of stress signals. This stress response is mediated by the homologous transcription factors Msn2p and Msn4p, which bind specifically to STREs. Double mutants (msn2 msn4) deficient in these transcription factors have been shown to be hypersensitive to severe stress conditions. To obtain a more representative overview of the set of yeast genes controlled via this regulon, a computer search of the Saccharomyces cerevisiae genome was carried out for genes, which, similar to most known STRE-controlled genes, exhibit at least two STREs in their upstream region. In addition to the great majority of genes previously known to be controlled via STREs, 69 open reading-frames were detected. Expression patterns of a set of these were examined by grid filter hybridization, and 14 genes were examined by Northern analysis. Comparison of the expression patterns of these genes demonstrates that they are all STRE-controlled although their detailed expression patterns differ considerably. © 1998 John Wiley & Sons, Ltd.
    Zusätzliches Material: 2 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...