ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Institute of Physics (AIP)  (6)
  • Geological Society of London  (3)
  • Institute of Physics  (3)
  • American Association for the Advancement of Science (AAAS)
  • Amsterdam : Elsevier
  • 2000-2004  (3)
  • 1990-1994  (9)
  • 1980-1984
  • 2001  (3)
  • 1991  (9)
Collection
Publisher
Years
  • 2000-2004  (3)
  • 1990-1994  (9)
  • 1980-1984
Year
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 95 (1991), S. 5403-5418 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The vibrational dynamics of excited CO layers on Pt(111) were studied using infrared (IR) pump–probe methods. Resonant IR pulses of 0.7 ps duration strongly pumped the absorption line (ν≈2106 cm−1 ) of top-site CO. Weak probe pulses delayed a time tD after the pump were reflected from the CO-covered Pt(111) surface, and dispersed in a monochromator to determine the absorption spectrum of the vibrationally excited CO band, with time resolution 〈1 ps and monochromator resolution 〈1 cm−1. Transient spectra were obtained as a function of CO coverage, surface temperature, and laser fluence. Complex spectra for tD〈0 show features characteristic of a perturbed free induction decay, which are expected based on multiple-level density-matrix models. For tD≥0, the CO/Pt absorption exhibits a shift to lower frequency and an asymmetric broadening which are strongly dependent on fluence (1.3–15 mJ/cm2 ). Spectra return to equilibrium (unexcited) values within a few picoseconds. These transient spectral shifts and the time scale for relaxation do not depend (within experimental error) on coverage for 0.1≤aitch-thetaCO≤0.5 ML or on temperature for 150≤Ts≤300 K. A model for coupled anharmonic oscillators qualitatively explains the tD〉0 spectra in terms of a population-dependent decrease in frequency of the one-phonon band, as opposed to a transition involving a true CO(v=2) two-phonon bound state. The rapid relaxation time and its insensitivity to Ts and aitch-thetaCO are consistent with electron–hole pair generation as the dominant decay mechanism.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 94 (1991), S. 250-261 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: NH stretching overtone and combination states in HN3 X˜ 1A' were excited by IR–visible double resonance pumping and by direct overtone pumping in the range 6ν1 (17 670 cm−1) to 7ν1 (20 070 cm−1). NH fragments in the a 1Δ and X 3Σ− states were detected by laser induced fluorescence with sub-Doppler resolution to determine branching ratios, correlated fragment rotational state and kinetic energy distributions, and fragment vector correlations. The spin-forbidden triplet channel was accessible to all states excited, while the threshold for the singlet channel was determined to lie in the range 18 190 to 18 755 cm−1. The measured energy release places limits on the HN–NN bond energy, and the heights of barriers to reaction. The barrier in the singlet exit channel is at least 540 cm−1. The singlet channel accessed by 7ν1 dissociation is characterized by a Boltzmann-like NH rotational distribution (〈J NH〉≈3.5), highly excited N2 rotations (〈JN2〉 ≥ 20), and total translational energy release peaked away from zero (〈ET〉≈1350 cm−1). Vector correlations and Λ-doublet propensities indicate that nonplanar dissociation processes influence the NH rotations, but become less important for higher NH rotational states. The principal correlations are a strong positive recoil anisotropy (β≈0.6), a weak positive v–J correlation (βvJ≈0.17), and a JNH-dependent Λ-doublet propensity. A model using parent vibrational motion projected onto fragment rotation is suggested to explain these observations. The triplet channel exhibits similar NH and N2 rotational state distributions, with most of the available energy (substantially greater than in the singlet channel) appearing as fragment kinetic energy.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 94 (1991), S. 4171-4181 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Nonadiabatic interactions in the NeICl van der Waals complex have been explored in the lowest energy triad of ICl ion-pair states (∼39 000 cm−1). Dispersed fluorescence measurements reveal emission characteristic of multiple ion-pair electronic states, with the relative contributions from the E(0+), β(1), and D'(2) states changing with the initial ICl vibrational excitation (vICl). Emission directly from NeICl (vICl=0) complexes indicates that the initially prepared NeICl levels have mixed electronic character and that the ICl electronic parentage changes with the initial van der Waals vibrational level selected. NeICl complexes prepared with 1–4 quanta of ICl stretch undergo rapid vibrational predissociation with a strong propensity for ΔvICl=−1 relaxation. The electronic state(s) populated in the ICl fragments differ from the mixed electronic character of the initially prepared level, demonstrating that vibrational predissociation is accompanied by nonadiabatic electronic state changing processes. The observed final state selectivity may be attributed to the relative strength of the nonadiabatic couplings between the initial NeICl bound state and the final ICl states or a momentum gap rationale based on the overlap between the NeICl bound state wave function and the highly oscillatory continuum wave function of the separating fragments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY : American Institute of Physics (AIP)
    Physics of Fluids 3 (1991), S. 1461-1461 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: An experimental study was carried out to investigate turbulent mixing and entrainment across a density interface subjected to velocity shear. The flow configuration consisted of a salinity (stably) stratified two-fluid system with a driven upper turbulent layer and a quiescent lower layer. The experiments were performed in an Odell–Kovasznay tank and the mean flow in the upper layer was generated by using a conventional disk pump. The velocity and salinity measurements were made using a laser-Doppler anemometer and conductivity probes, respectively, and (quantitative) flow visualization was performed using the laser-induced fluorescence LIF technique. The refractive indices of upper and lower layers were matched, using salt and alcohol, to facilitate the use of laser-based flow diagnostic techniques. The measurements show that the rms velocity fluctuation u in bulk of the mixed layer scales well with the mean velocity jump Δu across the interface. The Thorpe, buoyancy, overturning, and integral length scales, as well as the maximum Thorpe displacement in the mixed layer, were also found to be proportional to the depth h of the upper mixed layer.The structure of the entrainment interface was found to depend strongly on the bulk Richardson number Ri (=Δb h/u2), where Δb is the buoyancy jump across the interfacial layer. At lower Ri, the entrainment occurred rapidly, as in a nonstratified fluid, but as Ri increases, the entrainment rate becomes a strong function of Ri: under the latter conditions, the interfacial wave breaking and Kelvin–Helmholtz instabilities were common features. At still higher Ri, the entrainment rate becomes vanishingly small and the interfacial mixing events were found to be controlled by the molecular diffusive effects. The measurement of the interfacial-layer thickness using LIF shows that it is much thinner than that measured using less-accurate techniques such as traversing probes. The nondimensional rms amplitude of the interfacial distortions at moderate and high Ri was found to be a strong function of Ri. The interfacial instabilities cause the formation of isolated mixing patches within the interface, which, when collapsed, form horizontal intrusions. The experimental measurements were in agreement with theoretical formulations based on scaling arguments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 114 (2001), S. 1214-1232 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The mechanism of the reaction CH4+O(1D2)→CH3+OH was investigated by ultrafast, time-resolved and state-resolved experiments. In the ultrafast experiments, short ultraviolet pulses photolyzed ozone in the CH4⋅O3 van der Waals complex to produce O(1D2). The ensuing reaction with CH4 was monitored by measuring the appearance rate of OH(v=0,1;J,Ω,Λ) by laser-induced fluorescence, through the OH A←X transition, using short probe pulses. These spectrally broad pulses, centered between 307 and 316 nm, probe many different OH rovibrational states simultaneously. At each probe wavelength, both a fast and a slow rise time were evident in the fluorescence signal, and the ratio of the fast-to-slow signal varied with probe wavelength. The distribution of OH(v,J,Ω,Λ) states, Pobs(v,J,Ω,Λ), was determined by laser-induced fluorescence using a high-resolution, tunable dye laser. The Pobs(v,J,Ω,Λ) data and the time-resolved data were analyzed under the assumption that different formation times represent different reaction mechanisms and that each mechanism produces a characteristic rovibrational distribution. The state-resolved and the time-resolved data can be fit independently using a two-mechanism model: Pobs(v,J,Ω,Λ) can be decomposed into two components, and the appearance of OH can be fit by two exponential rise times. However, these independent analyses are not mutually consistent. The time-resolved and state-resolved data can be consistently fit using a three-mechanism model. The OH appearance signals, at all probe wavelengths, were fit with times τfast(approximate)0.2 ps, τinter(approximate)0.5 ps and τslow(approximate)5.4 ps. The slowest of these three is the rate for dissociation of a vibrationally excited methanol intermediate (CH3OH*) predicted by statistical theory after complete intramolecular energy redistribution following insertion of O(1D2) into CH4. The Pobs(v,J,Ω,Λ) was decomposed into three components, each with a linear surprisal, under the assumption that the mechanism producing OH at a statistical rate would be characterized by a statistical prior. Dissociation of a CH4O* intermediate before complete energy randomization was identified as producing OH at the intermediate rate and was associated with a population distribution with more rovibrational energy than the slow mechanism. The third mechanism produces OH promptly with a cold rovibrational distribution, indicative of a collinear abstraction mechanism. After these identifications were made, it was possible to predict the fraction of signal associated with each mechanism at different probe wavelengths in the ultrafast experiment, and the predictions proved consistent with measured appearance signals. This model also reconciles data from a variety of previous experiments. While this model is the simplest that is consistent with the data, it is not definitive for several reasons. First, the appearance signals measured in these experiments probe simultaneously many OH(v,J,Ω,Λ) states, which would tend to obfuscate differences in the appearance rate of specific rovibrational states. Second, only about half of the OH(v,J,Ω,Λ) states populated by this reaction could be probed by laser-induced fluorescence through the OH A←X band with our apparatus. Third, the cluster environment might influence the dynamics compared to the free bimolecular reaction.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 115 (2001), S. 4132-4138 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The collision-induced electronic energy transfer that occurs when I2 in the E(0g+) ion-pair electronic state collides with ground electronic state I2 has been investigated. We prepare I2 in single rotational levels in v=0 of the E state using two-color double resonance laser excitation. The resulting emission spectrum shows that the nearby (ΔTe=−385 cm−1) D(0u+) electronic state is populated. The cross section for collision-induced E→D energy transfer is found to be 18±3 Å2. A range of D state vibrational levels are populated, consistent with a model in which overlap between the initial and final vibrational wave functions is important, but modulated by propensities for small vibrational energy gaps and those energy gaps that are closely matched to the v=0→v=1 energy separation in the I2(X) collision partner. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1991-04-01
    Print ISSN: 0957-0233
    Electronic ISSN: 1361-6501
    Topics: Electrical Engineering, Measurement and Control Technology , Physics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1991-08-01
    Print ISSN: 0067-0049
    Electronic ISSN: 1538-4365
    Topics: Physics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1991-02-01
    Print ISSN: 0004-637X
    Electronic ISSN: 1538-4357
    Topics: Physics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1991-09-01
    Print ISSN: 0036-9276
    Electronic ISSN: 2041-4951
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...