ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • FLUID MECHANICS AND HEAT TRANSFER  (7)
  • Aerospace Medicine
  • Chemical Engineering
  • 2005-2009
  • 1990-1994  (8)
  • 1970-1974
  • 1960-1964
  • 1990  (8)
  • 1
    Electronic Resource
    Electronic Resource
    Brookfield, Conn. : Wiley-Blackwell
    Polymer Composites 11 (1990), S. 368-378 
    ISSN: 0272-8397
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Glass mat reinforced thermoplastics (GMTs) offer a useful combination of mechanical properties and formability. In principle, these composites may be based on any thermoplastic matrix. In practice, matrix selection is limited because of its impact on the manufacturing and compression molding processes. In this work an isothermal squeezing flow technique is used to determine the apparent biaxial extensional viscosities of polycarbonate, polybutylene terephthalate, and polypropylene-based GMTs. Experimental load-deformation data are interpreted by treating the GMTs as viscous, incompressible Newtonian fluids. Two primary effects are observed: (1) the composites appear to strain harden as they are deformed, and (2) GMT apparent biaxial extensional viscosities correlate with the high rate of deformation shear viscosities of the matrices. A mechanism that explains the second result is proposed.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-19
    Description: Long-wave instabilities in a directionally-solidified binary mixture may occur in several limits. Sivashinsky (1983) identified a small-segregation-coefficient limit and obtained a weakly nonlinear evolution equation governing subcritical two-dimensional bifurcation. Brattkus and Davis (1988) identified a near-absolute-stability limit and obtained a strongly nonlinear evolution equation governing supercritical two-dimensional bifurcation. The present investigation identifies a third strongly nonlinear evolution equation, arising in the small-segregation-coefficient, large-surface-energy limit. This equation links both of the former and describes the change from the sub- to super-critical bifurcations. This study sets the previous long-wave analyses into a logical framework.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: SIAM Journal on Applied Mathematics (ISSN 0036-1399); 50; 420-436
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-19
    Description: A binary liquid undergoes unidirectional solidification. The one-dimensional steady state is susceptible to morphological instability that causes the solid/liquid interface to change from a planar state to a cellular pattern. This paper examines the effects on this transition of volume-change convection, buoyancy-driven convection or forced flows. It emphasizes how flows alter stability limits, create scale and pattern changes in morphology, and create, through coupling, new instabilities. Emphasis is placed on the physical mechanisms of the interactions.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Journal of Fluid Mechanics (ISSN 0022-1120); 212; 241-262
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-19
    Description: A binary liquid that undergoes directional solidification is susceptible to morphological and solutal-convective instabilities that cause the solid/liquid interface to change from a planar to a cellular state. This paper gives derivations for those long-wave evolution equations that describe the weak couplings between convection and interface morphology and gives some analytical results obtainable from these.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: IMA Journal of Applied Mathematics (ISSN 0272-4960); 45; 3, 19; 267-285
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: An incompressible, turbulent, swirl-free flow through a circular-to-rectangular transition duct was studied experimentally. The cross-sectional geometry all along the duct was defined using the equation of a superellipse. The three mean velocity components and the six Reynolds stress components were measured at two axial stations downstream from the transition. It is shown that a secondary flow vortex pair which develops along the duct sidewalls significantly distorts the mean and turbulence fields. At the duct exit, the flow is not in local equilibrium, but recovers to local equilibrium conditions in the rectangular extension duct. Analysis demonstrates that conventional wall functions are not applicable at all streamwise locations in the duct.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA PAPER 90-1505
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: Two- and three-dimensional Navier-Stokes analyses are used to predict unsteady viscous rotor-stator interacting flow in the presence of a combustor hot streak. Predicted results are presented for a two-dimensional three-stator/four-rotor, a two-dimensional one-stator/one-rotor, and a three-dimensional one-stator/one-rotor simulation of hot streak migration through a turbine stage. Comparison of these results with experimental data demonstrates the capability of the three-dimensional procedure to capture most of the flow physics associated with hot streak migration including the effects of combustor hot streaks on turbine rotor surface temperatures. It is noted that blade count ratio has little effect on predicted time-averaged surface pressure and temperature distributions, but a substantial effect on the unsteady flow characteristics. It is shown that high-temperature hot streak fluid accumulates on the pressure surface of the rotor blades, resulting in a high time-averaged surface temperature 'hot spots'.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA PAPER 90-2354
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-12
    Description: The deformation of a viscous drop, driven by buoyancy toward a solid surface or a deformable interface, is analyzed in the asymptotic limit of small Bond number, for which the deformation becomes important only when the drop is close to the solid surface or interface. Lubrication theory is used to describe the flow in the thin gap between the drop and the solid surface or interface, and boundary-integral theory is used in the fluid phases on either side of the gap. The evolution of the drop shape is traced from a relatively undeformed state until a dimple is formed and a long-time quasi-steady-state pattern is established. A wide range of drop to suspending phase viscosity ratios is examined. It is shown that a dimple is always formed, independently of the viscosity ratio, and that the long-time thinning rates take simple forms as inverse fractional powers of time.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Journal of Fluid Mechanics (ISSN 0022-1120); 217; 547-573
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The results of an experimental wind tunnel investigation of a circular supersonic jet (m sub j = 3.47) injected at a 10 degree angle into a supersonic freestream. The jet penetrates a boundary layer, which has a thickness approximately the same as the jet nozzle exit diameter. Measurements were made for nominal freestream Mach numbers of 1.6, 2.0, 2.5, and 3.0. Three jet total pressures were run at each freestream Mach number, resulting in twelve separate operating conditions. Mean data accumulated by means of static and total pressure probe instrumentation are presented at two axial stations: seven jet nozzle diameters upstream and 15 jet nozzle diameters downstream from where the centerline of the nozzle intersects the wind tunnel wall. For one condition at each freestream Mach number, the jet air was seeded with a hydrocarbon trace gas and the flow was sampled at the downstream measurement plane to quantify the mean mixing of the two streams. Surface oil flow visualization was also used to investigate the flow interaction. All results are for air-to-air mixing. The measurements indicate the presence of two pairs contra-rotating vortices. One pair follows the jet trajectory and tends to split the jet into two streams. A smaller pair, rotating in an opposite sense, develops in the near wall region. Reported results include Mach number and volume fraction distributions in the cross plane, as well as jet penetration and mixing efficiency.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA-TM-103726 , E-5960 , NAS 1.15:103726 , AIAA PAPER 90-5240 , Second International Aerospace Planes Conference; Oct 29, 1990 - Oct 31, 1990; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...