ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Transcription, Genetic  (16)
  • American Association for the Advancement of Science (AAAS)  (16)
  • American Geophysical Union
  • Blackwell Publishing Ltd
  • 2020-2023
  • 1985-1989  (16)
  • 1980-1984
  • 1970-1974
  • 1988  (16)
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (16)
  • American Geophysical Union
  • Blackwell Publishing Ltd
Years
  • 2020-2023
  • 1985-1989  (16)
  • 1980-1984
  • 1970-1974
Year
  • 1
    Publication Date: 1988-03-11
    Description: The expression of human immunodeficiency virus (HIV) after T cell activation is regulated by NF-kappa B, an inducible DNA-binding protein that stimulates transcription. Proteins encoded by a variety of DNA viruses are also able to activate expression from the HIV enhancer. To determine how this activation occurs, specific genes from herpes simplex virus type 1 and adenovirus that activate HIV in T lymphoma cells have been identified. The cis-acting regulatory sequences in the HIV enhancer that mediate their effect have also been characterized. The relevant genes are those for ICP0-an immediate-early product of herpes simplex virus type 1-and the form of E1A encoded by the 13S messenger RNA of adenovirus. Activation of HIV by adenovirus E1A was found to depend on the TATA box, whereas herpesvirus ICP0 did not work through a single defined cis-acting element. These findings suggest multiple pathways that can be used to bypass normal cellular activation of HIV, and they raise the possibility that infection by herpes simplex virus or adenovirus may directly contribute to the activation of HIV in acquired immunodeficiency syndrome by mechanisms independent of antigenic stimulation in T cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nabel, G J -- Rice, S A -- Knipe, D M -- Baltimore, D -- AI20530/AI/NIAID NIH HHS/ -- F32GM11224/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1988 Mar 11;239(4845):1299-302.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Cambridge, MA 02142.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2830675" target="_blank"〉PubMed〈/a〉
    Keywords: Adenoviruses, Human/genetics ; *Enhancer Elements, Genetic ; Genes, Regulator ; *Genes, Viral ; HIV/*genetics/growth & development ; Humans ; *Lymphocyte Activation ; Plasmids ; Simplexvirus/genetics ; T-Lymphocytes/*immunology ; Transcription, Genetic ; Virus Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-09-23
    Description: The developmental regulation of two kinds of Xenopus 5S RNA genes (oocyte and somatic types) can be explained by differences in the stability of protein-protein and protein-DNA interactions in a transcription complex that directs transcription initiation by RNA polymerase III. Dissociation of transcription factors from oocyte 5S RNA genes during development allows them to be repressed by chromatin assembly. In the same cells, somatic 5S RNA genes remain active because their transcription complexes are stable.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wolffe, A P -- Brown, D D -- GM22395/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1988 Sep 23;241(4873):1626-32.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Embryology, Carnegie Institution of Washington, Baltimore, MD 21210.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3420414" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Chromatin ; DNA/physiology ; DNA Replication ; *Gene Expression Regulation ; Genes ; Oocytes/cytology/ultrastructure ; RNA, Ribosomal/*genetics ; RNA, Ribosomal, 5S/*genetics ; Transcription Factor TFIIIA ; Transcription Factor TFIIIB ; Transcription Factors/genetics ; *Transcription Factors, TFIII ; Transcription, Genetic ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1988-08-05
    Description: The presence of macrophages is required for the regeneration of many cell types during wound healing. Macrophages have been reported to express a wide range of mitogenic factors and cytokines, but none of these factors has been shown in vivo to sustain all the wound-healing processes. It has been suggested that transforming growth factor-alpha (TGF-alpha) may mediate angiogenesis, epidermal regrowth, and formation of granulation tissue in vivo. Macrophages isolated from a wound site, and not exposed to cell culture conditions, expressed messenger RNA transcripts for TGF-alpha, TGF-beta, platelet-derived growth factor A-chain, and insulin-like growth factor-1. The expression of these transcripts was determined by a novel method for RNA analysis in which low numbers of mouse macrophages were isolated from wound cylinders, their RNA was purified and reverse-transcribed, and the complementary DNA was amplified in a polymerase chain reaction primed with growth factor sequence-specific primers. This single-cell RNA phenotyping procedure is rapid and has the potential for quantification, and mRNA transcripts from a single cell or a few cells can be unambiguously demonstrated, with the simultaneous analysis of several mRNA species. Macrophages from wounds expressed TGF-alpha antigen, and wound fluids contained TGF-alpha. Elicited macrophages in culture also expressed TGF-alpha transcripts and polypeptide in a time-dependent manner after stimulation with modified low-density lipoproteins and lipopolysaccharide endotoxin, which are characteristic of the activators found in injured tissues.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rappolee, D A -- Mark, D -- Banda, M J -- Werb, Z -- AR 32746/AR/NIAMS NIH HHS/ -- GM 27345/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1988 Aug 5;241(4866):708-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Radiobiology and Environmental Health, University of California, San Francisco 94143.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3041594" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; DNA/genetics ; Enzyme-Linked Immunosorbent Assay ; Epidermal Growth Factor/biosynthesis/genetics ; Fibroblast Growth Factors/biosynthesis/genetics ; Fibroblasts/metabolism ; Fluorescent Antibody Technique ; Growth Substances/*biosynthesis/genetics ; Insulin-Like Growth Factor I/biosynthesis/genetics ; Macrophages/*metabolism ; Male ; Mice ; Nucleic Acid Hybridization ; *Peptide Biosynthesis ; Peptides/genetics ; Platelet-Derived Growth Factor/biosynthesis/genetics ; Protein Biosynthesis ; RNA, Messenger/*biosynthesis ; Rabbits ; Transcription, Genetic ; Transforming Growth Factors ; *Wound Healing ; Wounds and Injuries/*pathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1988-02-26
    Description: The T cell antigen receptor is a multi-subunit receptor complex present on the surface of all mature and many developing T cells. It consists of clonotypic heterodimers noncovalently linked to five invariant chains that are encoded by four genes and referred to as the CD3 complex. The CD3 gamma, delta, and epsilon chains have been molecularly characterized. In this report the molecular cloning of a complementary DNA encoding the zeta chain of the murine T cell antigen receptor is described. The predicted protein sequence of the zeta chain suggests a structure distinct from those of any of the previously described receptor subunits.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weissman, A M -- Baniyash, M -- Hou, D -- Samelson, L E -- Burgess, W H -- Klausner, R D -- New York, N.Y. -- Science. 1988 Feb 26;239(4843):1018-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3278377" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cell Membrane/metabolism ; Chromatography, High Pressure Liquid ; *Cloning, Molecular ; Cyanogen Bromide ; DNA/genetics ; Electrophoresis, Polyacrylamide Gel ; Immunosorbent Techniques ; Macromolecular Substances ; *Membrane Proteins ; Mice ; Molecular Sequence Data ; Molecular Weight ; Nucleic Acid Hybridization ; Peptide Fragments ; Protein Biosynthesis ; RNA, Messenger/genetics ; Receptors, Antigen, T-Cell/*genetics ; T-Lymphocytes/analysis ; Transcription, Genetic ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1988-09-30
    Description: Control of growth and differentiation during mammalian embryogenesis may be regulated by growth factors from embryonic or maternal sources. With the use of single-cell messenger RNA phenotyping, the simultaneous expression of growth factor transcripts in single or small numbers of preimplantation mouse embryos was examined. Transcripts for platelet-derived growth factor A chain (PDGF-A), transforming growth factor (TGF)-alpha, and TGF-beta 1, but not for four other growth factors, were found in whole blastocysts. TGF-alpha, TGF-beta 1, and PDGF antigens were detected in blastocysts by immunocytochemistry. Both PDGF-A and TGF-alpha were detected as maternal transcripts in the unfertilized ovulated oocyte, and again in blastocysts. TGF-beta 1 transcripts appeared only after fertilization. The expression of a subset of growth factors in mouse blastocysts suggests a role for these factors in the growth and differentiation of early mammalian embryos.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rappolee, D A -- Brenner, C A -- Schultz, R -- Mark, D -- Werb, Z -- 5T32 ES07106/ES/NIEHS NIH HHS/ -- HD22681/HD/NICHD NIH HHS/ -- HD23539/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1988 Sep 30;241(4874):1823-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Radiobiology and Environmental Health, University of California, San Francisco 94143-0750.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3175624" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blastocyst/*physiology ; Cleavage Stage, Ovum/physiology ; Embryonic Development ; Female ; Gene Expression Regulation ; Growth Substances/*genetics ; Mice ; Oocytes/physiology ; Platelet-Derived Growth Factor/*genetics ; Pregnancy ; RNA, Messenger/genetics ; Transcription, Genetic ; Transforming Growth Factors/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1988-05-13
    Description: The biosynthetic rates for both the transferrin receptor (TfR) and ferritin are regulated by iron. An iron-responsive element (IRE) in the 5' untranslated portion of the ferritin messenger RNA (mRNA) mediates iron-dependent control of its translation. In this report the 3' untranslated region of the mRNA for the human TfR was shown to be necessary and sufficient for iron-dependent control of mRNA levels. Deletion studies identified a 678-nucleotide fragment of the TfR complementary DNA that is critical for this iron regulation. Five potential stem-loops that resemble the ferritin IRE are contained within the region critical for TfR regulation. Each of two of the five TfR elements was independently inserted into the 5' untranslated region of an indicator gene transcript. In this location they conferred iron regulation of translation. Thus, an mRNA element has been implicated in the mediation of distinct regulatory phenomena dependent on the context of the element within the transcript.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Casey, J L -- Hentze, M W -- Koeller, D M -- Caughman, S W -- Rouault, T A -- Klausner, R D -- Harford, J B -- New York, N.Y. -- Science. 1988 May 13;240(4854):924-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2452485" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; DNA/genetics ; DNA, Recombinant ; Ferritins/biosynthesis/*genetics ; Growth Hormone/genetics ; Humans ; Iron/*pharmacology ; Mice ; Plasmids ; Protein Biosynthesis/*drug effects ; RNA/*genetics ; RNA, Messenger/*genetics ; Receptors, Transferrin/biosynthesis/*genetics ; *Regulatory Sequences, Nucleic Acid ; Transcription, Genetic ; Transfection ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1988-08-26
    Description: In situ hybridization was used to assess total amyloid protein precursor (APP) messenger RNA and the subset of APP mRNA containing the Kunitz protease inhibitor (KPI) insert in 11 Alzheimer's disease (AD) and 7 control brains. In AD, a significant twofold increase was observed in total APP mRNA in nucleus basalis and locus ceruleus neurons but not in hippocampal subicular neurons, neurons of the basis pontis, or occipital cortical neurons. The increase in total APP mRNA in locus ceruleus and nucleus basalis neurons was due exclusively to an increase in APP mRNA lacking the KPI domain. These findings suggest that increased production of APP lacking the KPI domain in nucleus basalis and locus ceruleus neurons may play an important role in the deposition of cerebral amyloid that occurs in AD.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Palmert, M R -- Golde, T E -- Cohen, M L -- Kovacs, D M -- Tanzi, R E -- Gusella, J F -- Usiak, M F -- Younkin, L H -- Younkin, S G -- 5T32GM07250/GM/NIGMS NIH HHS/ -- AG06656/AG/NIA NIH HHS/ -- MH43444/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 1988 Aug 26;241(4869):1080-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Neuropathology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2457949" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/*genetics ; Amyloid/*genetics ; Bacteriophage lambda/genetics ; Brain/metabolism ; Cerebral Cortex/metabolism ; *Gene Expression Regulation ; Humans ; Locus Coeruleus/metabolism ; Neurons/metabolism ; Nucleic Acid Hybridization ; Operator Regions, Genetic ; Plasmids ; Protein Precursors/*genetics ; RNA/genetics ; RNA, Complementary ; RNA, Messenger/*genetics/metabolism ; Repressor Proteins/metabolism ; Transcription, Genetic ; Trypsin Inhibitors/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-11-04
    Description: As a way of studying nucleosome assembly and maintenance in Saccharomyces cerevisiae, mutants bearing deletions or duplications of the genes encoding histones H2A and H2B were analyzed. Previous genetic analysis had shown that only one of these mutants exhibited dramatic and pleiotropic phenotypes. This mutant was also the only one that contained disrupted chromatin, suggesting that the original phenotypes were attributable to alterations in chromosome structure. The chromatin disruption in the mutant, however, did not extend over the entire genome, but rather was localized to specific regions. Thus, while the arrangement of nucleosomes over the HIS4 and GAL1 genes, the telomeres, and the long terminal repeats (delta sequences) of Ty retrotransposons appeared essentially normal, nucleosomes over the CYH2 and UBI4 genes and the centromere of chromosome III were dramatically disrupted. The observation that the mutant exhibited localized chromatin disruptions implies that the assembly or maintenance of nucleosomes differs over different parts of the yeast genome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Norris, D -- Dunn, B -- Osley, M A -- GM40118/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1988 Nov 4;242(4879):759-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2847314" target="_blank"〉PubMed〈/a〉
    Keywords: Centromere/ultrastructure ; Chromatin/physiology/*ultrastructure ; Chromosome Deletion ; DNA Transposable Elements ; Galactose ; Gene Expression Regulation ; Genes, Fungal ; Histidine ; Histones/*genetics ; Mutation ; Phenotype ; RNA, Messenger/genetics ; Repetitive Sequences, Nucleic Acid ; Saccharomyces cerevisiae/genetics/*ultrastructure ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1988-01-01
    Description: The multiple copies of the human ribosomal RNA genes (rDNA) are arranged as tandem repeat clusters that map to the middle of the short arms of chromosomes 13, 14, 15, 21, and 22. Concerted evolution of the gene family is thought to be mediated by interchromosomal recombination between rDNA repeat units, but such events would also result in conservation of the sequences distal to the rDNA on these five pairs of chromosomes. To test this possibility, a DNA fragment spanning the junction between rDNA and distal flanking sequence has been cloned and characterized. Restriction maps, sequence data, and gene mapping studies demonstrate that (i) the rRNA genes are transcribed in a telomere-to-centromere direction, (ii) the 5' end of the cluster and the adjacent non-rDNA sequences are conserved on the five pairs of chromosomes, and (iii) the 5' end of the cluster is positioned about 3.7 kb upstream from the transcription initiation site of the first repeat unit. The data support a model of concerted evolution by interchromosomal recombination.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Worton, R G -- Sutherland, J -- Sylvester, J E -- Willard, H F -- Bodrug, S -- Dube, I -- Duff, C -- Kean, V -- Ray, P N -- Schmickel, R D -- HD-13506/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1988 Jan 1;239(4835):64-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genetics Department, Hospital for Sick Children, Toronto, Ontario, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3336775" target="_blank"〉PubMed〈/a〉
    Keywords: Biological Evolution ; Chromosomes, Human, Pair 13 ; Chromosomes, Human, Pair 14 ; Chromosomes, Human, Pair 15 ; Chromosomes, Human, Pair 21 ; Chromosomes, Human, Pair 22 ; Cloning, Molecular ; DNA, Ribosomal/*genetics ; Genes ; Humans ; RNA, Ribosomal/*genetics ; Sequence Homology, Nucleic Acid ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1988-06-24
    Description: A 20-base pair region in the first intron of the human c-myc gene was identified as the binding site of a nuclear protein. This binding site is mutated in five out of seven Burkitt lymphomas sequenced to date. To investigate the protein-recognition region in greater detail, the abnormal c-myc allele from a Burkitt lymphoma line (PA682) that carries a t(8;22) chromosomal translocation was used. A point mutation in the binding region of the PA682 c-myc DNA abolished binding of this nuclear protein. This protein may be an important factor for control of c-myc expression, and mutations in its recognition sequence may be associated with c-myc activation in many cases of Burkitt lymphoma.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zajac-Kaye, M -- Gelmann, E P -- Levens, D -- New York, N.Y. -- Science. 1988 Jun 24;240(4860):1776-80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medicine Branch, National Cancer Institute, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2454510" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Burkitt Lymphoma/*genetics ; DNA-Binding Proteins/*metabolism ; Gene Expression Regulation ; Humans ; Molecular Sequence Data ; Mutation ; Nuclear Proteins/*metabolism ; *Oncogenes ; Proto-Oncogene Proteins/*genetics ; RNA/genetics ; RNA, Antisense ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...