ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (22)
  • RNA, Messenger/genetics  (22)
  • American Association for the Advancement of Science (AAAS)  (22)
  • Springer
  • 2005-2009
  • 1985-1989  (22)
  • 1989  (7)
  • 1987  (15)
Collection
  • Articles  (22)
Publisher
  • American Association for the Advancement of Science (AAAS)  (22)
  • Springer
Years
  • 2005-2009
  • 1985-1989  (22)
Year
  • 1
    Publication Date: 1987-07-17
    Description: New blood vessel growth occurs during normal fetal development and in diseases such as cancer and diabetes. The polypeptide angiogenin induces new blood vessel growth in two biological assays and may play a role in the vascular development of the fetus and in the neovascularization that accompanies diseases and wound healing. A complementary DNA probe for human angiogenin was used to examine the tissue distribution of angiogenin messenger RNA (mRNA) in the developing rat and in selected transformed cell lines. Angiogenin mRNA was detected predominantly in adult liver but was also detectable at low levels in other tissues. The expression of the angiogenin gene in rat liver was found to be developmentally regulated; mRNA levels were low in the developing fetus, increased in the neonate, and maximal in the adult. The amount of angiogenin mRNA in human HT-29 colon carcinoma and SK-HEP hepatoma cells was not greater than that in normal rat liver. These results demonstrate that angiogenin is predominantly expressed in adult liver, that the pattern of angiogenin gene expression is not temporally related to vascular development in the rat, and that the transformed cells studied do not contain more angiogenin mRNA than does normal liver. If angiogenin activity is controlled at the transcriptional level, the results of this study suggest that the primary function of angiogenin in vivo may be in processes other than the regulation of vascular growth.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weiner, H L -- Weiner, L H -- Swain, J L -- HL26831/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1987 Jul 17;237(4812):280-2.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2440105" target="_blank"〉PubMed〈/a〉
    Keywords: Age Factors ; Animals ; Cell Line ; Gene Expression Regulation ; Humans ; Liver/physiology ; Neoplasm Proteins/*genetics ; Neovascularization, Pathologic ; RNA, Messenger/genetics ; Rats ; *Ribonuclease, Pancreatic ; Tissue Distribution
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1989-01-13
    Description: In the polymerase chain reaction (PCR), two specific oligonucleotide primers are used to amplify the sequences between them. However, this technique is not suitable for amplifying genes that encode molecules where the 5' portion of the sequences of interest is not known, such as the T cell receptor (TCR) or immunoglobulins. Because of this limitation, a novel technique, anchored polymerase chain reaction (A-PCR), was devised that requires sequence specificity only on the 3' end of the target fragment. It was used to analyze TCR delta chain mRNA's from human peripheral blood gamma delta T cells. Most of these cells had a V delta gene segment not previously described (V delta 3), and the delta chain junctional sequences formed a discrete subpopulation compared with those previously reported.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Loh, E Y -- Elliott, J F -- Cwirla, S -- Lanier, L L -- Davis, M M -- New York, N.Y. -- Science. 1989 Jan 13;243(4888):217-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Medicine and Microbiology and Immunology, Stanford University School of Medicine, CA 94305-5402.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2463672" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Cell Line ; Gene Amplification ; *Genes ; Humans ; Macromolecular Substances ; Molecular Sequence Data ; Oligonucleotide Probes ; RNA, Messenger/genetics ; RNA-Directed DNA Polymerase ; Receptors, Antigen, T-Cell/*genetics ; T-Lymphocytes/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1987-07-24
    Description: Abnormal accumulation of connective tissue in blood vessels contributes to alterations in vascular physiology associated with disease states such as hypertension and atherosclerosis. Elastin synthesis was studied in blood vessels from newborn calves with severe pulmonary hypertension induced by alveolar hypoxia in order to investigate the cellular stimuli that elicit changes in pulmonary arterial connective tissue production. A two- to fourfold increase in elastin production was observed in pulmonary artery tissue and medial smooth muscle cells from hypertensive calves. This stimulation of elastin production was accompanied by a corresponding increase in elastin messenger RNA consistent with regulation at the transcriptional level. Conditioned serum harvested from cultures of pulmonary artery smooth muscle cells isolated from hypertensive animals contained one or more low molecular weight elastogenic factors that stimulated the production of elastin in both fibroblasts and smooth muscle cells and altered the chemotactic responsiveness of fibroblasts to elastin peptides. These results suggest that connective tissue changes in the pulmonary vasculature in response to pulmonary hypertension are orchestrated by the medial smooth muscle cell through the generation of specific differentiation factors that alter both the secretory phenotype and responsive properties of surrounding cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mecham, R P -- Whitehouse, L A -- Wrenn, D S -- Parks, W C -- Griffin, G L -- Senior, R M -- Crouch, E C -- Stenmark, K R -- Voelkel, N F -- CA31777/CA/NCI NIH HHS/ -- HD20521/HD/NICHD NIH HHS/ -- HL14985/HL/NHLBI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1987 Jul 24;237(4813):423-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3603030" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anoxia ; Cattle ; Connective Tissue/pathology/*physiopathology ; Disease Models, Animal ; Elastin/genetics/physiology ; Humans ; Hypertension, Pulmonary/pathology/*physiopathology ; Muscle, Smooth, Vascular/pathology/*physiopathology ; RNA, Messenger/genetics ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1987-02-27
    Description: In initial attempts to define the molecular events responsible for the latent state of herpes simplex virus, in situ hybridization was utilized to search for virally encoded RNA transcripts in latently infected sensory neurons. The use of cloned probes representing the entire viral genome indicated that transcripts encoded within terminal repeats were present. When the alpha genes encoding ICP-0, ICP-4, and ICP-27 and the gamma 1 gene encoding VP-5 were employed, only RNA transcripts hybridizing to the ICP-0 probe were detected. In latently infected cells, the ICP-0--related transcripts were localized principally in the nucleus; this was not the case in acutely (productively) infected neurons or in neurons probed for RNA transcripts coding for actin. In Northern blotting experiments, an RNA of 2.6 kilobases was detected with the ICP-0 probe. When single-stranded DNAs from the ICP-0 region were used as probes, RNA from the strand complementary to that encoding ICP-0 messenger RNA (mRNA) was the major species detected. This RNA species may play a significant role in maintaining the latent infection.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stevens, J G -- Wagner, E K -- Devi-Rao, G B -- Cook, M L -- Feldman, L T -- AI-06246/AI/NIAID NIH HHS/ -- CA 11861/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1987 Feb 27;235(4792):1056-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2434993" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Ganglia, Spinal/microbiology ; *Genes, Viral ; Herpes Simplex/microbiology ; Mice ; Neurons/*microbiology ; Nucleic Acid Hybridization ; RNA/*genetics ; RNA, Complementary ; RNA, Messenger/genetics ; RNA, Viral/*genetics ; Simplexvirus/*genetics ; Transcription, Genetic ; Viral Proteins/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1987-02-20
    Description: The amyloid beta protein has been identified as an important component of both cerebrovascular amyloid and amyloid plaques of Alzheimer's disease and Down syndrome. A complementary DNA for the beta protein suggests that it derives from a larger protein expressed in a variety of tissues. Overexpression of the gene in brain tissue from fetuses with Down syndrome (trisomy 21) can be explained by dosage since the locus encoding the beta protein maps to chromosome 21. Regional localization of this gene by both physical and genetic mapping places it in the vicinity of the genetic defect causing the inherited form of Alzheimer's disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tanzi, R E -- Gusella, J F -- Watkins, P C -- Bruns, G A -- St George-Hyslop, P -- Van Keuren, M L -- Patterson, D -- Pagan, S -- Kurnit, D M -- Neve, R L -- AG00029/AG/NIA NIH HHS/ -- HD10658/HD/NICHD NIH HHS/ -- HD20118/HD/NICHD NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1987 Feb 20;235(4791):880-4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2949367" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/*genetics ; Amino Acid Sequence ; Amyloid/*genetics ; Amyloidosis/genetics ; Brain/physiopathology ; Chromosome Mapping ; *Chromosomes, Human, Pair 21 ; DNA/genetics ; Down Syndrome/genetics ; Gene Expression Regulation ; Genetic Linkage ; Humans ; RNA, Messenger/genetics ; Tissue Distribution ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1989-08-04
    Description: The pyrimidine analog 5-bromodeoxyuridine (BUdR) competes with thymidine for incorporation into DNA. Substitution of BUdR for thymidine does not significantly affect cell viability but does block cell differentiation in many different lineages. BUdR substitution in a mouse myoblast line blocked myogenic differentiation and extinguished the expression of the myogenic determination gene MyoD1. Forced expression of MyoD1 from a transfected expression vector in a BUdR-substituted myoblast overcame the block to differentiation imposed by BUdR. Activation of BUdR-substituted muscle structural genes and apparently normal differentiation were observed in transfected myoblasts. This shows that BUdR blocks myogenesis at the level of a myogenic regulatory gene, possibly MyoD1, not by directly inhibiting the activation of muscle structural genes. It is consistent with the idea that BUdR selectively blocks a class of regulatory genes, each member of which is important for the development of a different cell lineage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tapscott, S J -- Lassar, A B -- Davis, R L -- Weintraub, H -- New York, N.Y. -- Science. 1989 Aug 4;245(4917):532-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Fred Hutchinson Cancer Research Center, Seattle, WA 98104.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2547249" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bromodeoxyuridine/metabolism/*pharmacology ; Cell Differentiation/drug effects ; Cell Line ; Creatine Kinase/genetics ; DNA/metabolism ; Desmin/genetics ; Gene Expression Regulation/*drug effects ; Genes ; Mice ; Muscle Proteins/*genetics ; Muscles/*cytology ; Myogenin ; Nuclear Proteins/*genetics ; Plasmids ; RNA, Messenger/genetics ; Repetitive Sequences, Nucleic Acid ; Transcription, Genetic ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1989-03-03
    Description: Isolation of a clone encoding the mouse lymph node homing receptor reveals a deduced protein with an unusual protein mosaic architecture, containing a separate carbohydrate-binding (lectin) domain, an epidermal growth factor-like (EGF) domain, and an extracellular precisely duplicated repeat unit, which preserves the motif seen in the homologous repeat structure of complement regulatory proteins and other proteins. The receptor molecule is potentially highly glycosylated, and contains an apparent transmembrane region. Analysis of messenger RNA transcripts reveals a predominantly lymphoid distribution in direct relation to the cell surface expression of the MEL-14 determinant, and the cDNA clone is shown to confer the MEL-14 epitope in heterologous cells. The many novel features, including ubiquitination, embodied in this single receptor molecule form the basis for numerous approaches to the study of cell-cell interactions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Siegelman, M H -- van de Rijn, M -- Weissman, I L -- AI09022/AI/NIAID NIH HHS/ -- OIG43551/PHS HHS/ -- New York, N.Y. -- Science. 1989 Mar 3;243(4895):1165-72.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Stanford University School of Medicine, CA 94305.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2646713" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antibodies, Monoclonal ; Base Sequence ; Binding Sites ; Carbohydrate Metabolism ; Cell Membrane/metabolism ; DNA/*genetics ; Epidermal Growth Factor ; Glycosylation ; Lymph Nodes/*metabolism ; Membrane Glycoproteins/*genetics ; Mice ; Molecular Sequence Data ; Oligonucleotide Probes ; RNA, Messenger/genetics ; Receptors, Lymphocyte Homing ; Repetitive Sequences, Nucleic Acid ; Sequence Homology, Nucleic Acid ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-03-17
    Description: The adult form of Tay-Sachs disease, adult GM2 gangliosidosis, is an autosomal recessive disorder that results from mutations in the alpha chain of beta-hexosaminidase A. This disorder, like infantile Tay-Sachs disease, is more frequent in the Ashkenazi Jewish population. A point mutation in the alpha-chain gene was identified that results in the substitution of Gly with Ser in eight Ashkenazi adult GM2 gangliosidosis patients from five different families. This amino acid substitution was shown to depress drastically the catalytic activity of the alpha chain after expression in COS-1 cells. All of these patients proved to be compound heterozygotes of the allele with the Gly to Ser change and one of the two Ashkenazi infantile Tay-Sachs alleles. These findings will aid in the diagnosis and understanding of beta-hexosaminidase A deficiency disorders.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Navon, R -- Proia, R L -- New York, N.Y. -- Science. 1989 Mar 17;243(4897):1471-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genetics and Biochemistry Branch, National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2522679" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Cloning, Molecular ; Humans ; Jews ; Pedigree ; RNA, Messenger/genetics ; Structure-Activity Relationship ; Tay-Sachs Disease/*genetics ; beta-N-Acetylhexosaminidases/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-12-22
    Description: Fos and Jun form a heterodimeric complex that associates with the nucleotide sequence motif known as the AP-1 binding site. Although this complex has been proposed to function as a transcriptional regulator in neurons, no specific target gene has yet been identified. Proenkephalin mRNA increased in the hippocampus during seizure just after an increase in c-fos and c-jun expression was detected. Fos-Jun complexes bound specifically to a regulatory sequence in the 5' control region of the proenkephalin gene. Furthermore, c-fos and c-jun stimulated transcription from this control region synergistically in transactivation assays. These data suggest that the proenkephalin gene may be a physiological target for Fos and Jun in the hippocampus and indicate that these proto-oncogene transcription factors may play a role in neuronal responses to stimulation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sonnenberg, J L -- Rauscher, F J 3rd -- Morgan, J I -- Curran, T -- New York, N.Y. -- Science. 1989 Dec 22;246(4937):1622-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Oncology, Molecular Biology, Roche Research Center, Nutley, NJ 07110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2512642" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Brain/*metabolism ; Cell Line ; DNA-Binding Proteins/*genetics/metabolism ; Enhancer Elements, Genetic ; Enkephalins/*genetics ; *Gene Expression Regulation ; *Genes ; Hippocampus/metabolism ; Mice ; Molecular Sequence Data ; Promoter Regions, Genetic ; Protein Precursors/*genetics ; Protein-Tyrosine Kinases/*genetics ; Proto-Oncogene Proteins/*genetics/metabolism ; Proto-Oncogene Proteins c-fos ; Proto-Oncogene Proteins c-jun ; *Proto-Oncogenes ; RNA, Messenger/genetics ; Teratoma ; Transcription Factors/*genetics/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1989-09-01
    Description: Human alpha- and beta-globin genes were separately fused downstream of two erythroid-specific deoxyribonuclease (DNase) I super-hypersensitive sites that are normally located 50 kilobases upstream of the human beta-globin gene. These two constructs were coinjected into fertilized mouse eggs, and expression was analyzed in transgenic animals that developed. Mice that had intact copies of the transgenes expressed high levels of correctly initiated human alpha- and beta-globin messenger RNA specifically in erythroid tissue. An authentic human hemoglobin was formed in adult erythrocytes that when purified had an oxygen equilibrium curve identical to the curve of native human hemoglobin A (Hb A). Thus, functional human hemoglobin can be synthesized in transgenic mice. This provides a foundation for production of mouse models of human hemoglobinopathies such as sickle cell disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Behringer, R R -- Ryan, T M -- Reilly, M P -- Asakura, T -- Palmiter, R D -- Brinster, R L -- Townes, T M -- HD-09172/HD/NICHD NIH HHS/ -- HL-35559/HL/NHLBI NIH HHS/ -- HL-38632/HL/NHLBI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1989 Sep 1;245(4921):971-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Reproductive Physiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia 19104.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2772649" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Deoxyribonuclease I ; Female ; *Genes ; Globins/biosynthesis/*genetics ; Hemoglobins/biosynthesis/*genetics ; Humans ; Kinetics ; Mice ; Mice, Transgenic ; Oxyhemoglobins/metabolism ; RNA, Messenger/genetics ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...