ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (23)
  • Mutation  (23)
  • American Association for the Advancement of Science (AAAS)  (22)
  • Springer  (1)
  • Wiley
  • 2005-2009
  • 1985-1989  (23)
  • 1989  (15)
  • 1986  (8)
Collection
  • Articles  (23)
Publisher
  • American Association for the Advancement of Science (AAAS)  (22)
  • Springer  (1)
  • Wiley
  • Wiley-Blackwell  (1)
Years
  • 2005-2009
  • 1985-1989  (23)
Year
  • 1
    ISSN: 1432-2242
    Keywords: Tissue culture ; Electrophoresis ; Storage proteins ; Mutation ; Triticum aestivum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Fertile r0 plants of the winter wheat line ND7532 (Triticum aestivum L.) were regenerated from callus tissue after 60–190 days in culture. Seeds produced from these self-pollinated plants were planted in the field. Of the 5586 R1 plants, 32 differed for one or more agronomic traits from plants not passed through tissue culture process. Gliadin electrophoregrams were prepared from bulk samples of R2 seed from these 32 plants. Four of the 32 produced gliadin patterns different from controls, so 12 seeds of each of these four lines were examined individually. Three of the four mutant lines were fixed for the presence of a mutant protein of 50 relative mobility units (RMU) and the corresponding loss of a parental protein of 26 RMU. The remaining line segregated for the presence/absence of band 50 and the corresponding loss/retention of band 26. The mutant protein of 50 RMU was never seen in control plants. This indicated that either band 50 was coded for by a mutant gene allelic to the gene that coded for band 26 or that bands 26 and 50 were coded for by two different structural alleles under the control of a common regulatory locus. Each of the 12 seeds from the four mutant lines contained a prominent protein band at 30 (RMU), which was only observed as a faint band in one control seed. The types of variation in gliadin patterns observed in somaclones of ND7532 were similar to those reported for the line ‘Yaqui 50E’, except that, gliadin changes occurred less frequently in ND7532.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1989-10-27
    Description: Immunization with chemically detoxified pertussis toxin can prevent severe whooping cough with an efficacy similar to that of the cellular pertussis vaccine, which normally gives unwanted side effects. To avoid the reversion to toxicity and the loss of immunogenicity that may follow chemical treatment of pertussis toxin, inactive toxins were constructed by genetic manipulation. A number of genetically engineered alleles of the pertussis toxin genes, constructed by replacing either one or two key amino acids within the enzymatically active S1 subunit, were introduced into the chromosome of strains of Bordetella pertussis, B. parapertussis, and B. bronchiseptica. These strains produce mutant pertussis toxin molecules that are nontoxic and immunogenic and that protect mice from the intracerebral challenge with virulent Bordetella pertussis. Such molecules are ideal for the development of new and safer vaccines against whooping cough.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pizza, M -- Covacci, A -- Bartoloni, A -- Perugini, M -- Nencioni, L -- De Magistris, M T -- Villa, L -- Nucci, D -- Manetti, R -- Bugnoli, M -- New York, N.Y. -- Science. 1989 Oct 27;246(4929):497-500.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sclavo Research Center, Siena, Italy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2683073" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Female ; Genetic Techniques ; Mice ; Mice, Inbred BALB C ; Mutation ; *Pertussis Toxin ; Pertussis Vaccine/*toxicity ; Rabbits ; Vaccines, Synthetic/toxicity ; Virulence Factors, Bordetella/genetics/immunology/*toxicity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1989-05-12
    Description: Membrane fusion induced by the envelope glycoproteins of human and simian immunodeficiency viruses (HIV and SIVmac) is a necessary step for the infection of CD4 cells and for the formation of syncytia after infection. Identification of the region in these molecules that mediates the fusion events is important for understanding and possibly interfering with HIV/SIVmac infection and pathogenesis. Amino acid substitutions were made in the 15 NH2-terminal residues of the SIVmac gp32 transmembrane glycoprotein, and the mutants were expressed in recombinant vaccinia viruses, which were then used to infect CD4-expressing T cell lines. Mutations that increased the overall hydrophobicity of the gp32 NH2-terminus increased the ability of the viral envelope to induce syncytia formation, whereas introduction of polar or charged amino acids in the same region abolished the fusogenic function of the viral envelope. Hydrophobicity in the NH2-terminal region of gp32 may therefore be an important correlate of viral virulence in vivo and could perhaps be exploited to generate a more effective animal model for the study of acquired immunodeficiency syndrome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bosch, M L -- Earl, P L -- Fargnoli, K -- Picciafuoco, S -- Giombini, F -- Wong-Staal, F -- Franchini, G -- New York, N.Y. -- Science. 1989 May 12;244(4905):694-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Tumor Cell Biology, National Cancer Institute, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2541505" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Cell Line ; Cloning, Molecular ; DNA, Viral/genetics ; *Gene Products, env ; HIV/*analysis ; HIV Antigens/metabolism ; HIV Envelope Protein gp120 ; HIV Envelope Protein gp41 ; Humans ; Membrane Glycoproteins ; Molecular Sequence Data ; Mutation ; *Retroviridae Proteins/genetics/metabolism/pharmacology ; *Retroviridae Proteins, Oncogenic ; Retroviruses, Simian/*analysis ; Structure-Activity Relationship ; T-Lymphocytes, Helper-Inducer/microbiology ; Transfection ; Vaccinia virus/genetics ; *Viral Envelope Proteins/genetics/metabolism/pharmacology ; *Viral Fusion Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1986-08-08
    Description: A variant of human T-lymphotropic virus type III (HTLV-III) is described that replicates but does not kill normal human T cells in vitro. This variant, designated X10-1, was derived from the genome of a cytopathic HTLV-III clone (pHXB2D) by excision of a 200-base pair segment in the 3' region of the virus, spanning the env and 3'-orf genes. Comparable variants with 55 to 109 base pairs deleted exclusively in 3'-orf produced, in contrast, virus that was extremely cytopathic. On the basis of these findings it is concluded that the 3'-orf gene is not required for cytopathogenicity or replication of HTLV-III. In addition, the results suggest that virus replication and cytotoxicity are not intrinsically coupled. Furthermore, since clone X10-1 retains the ability to trans-activate genes linked to the viral long terminal repeats, trans-activation per se is not responsible for T-cell killing by HTLV-III. These results also raise the possibility that the carboxyl terminus of the envelope gene of HTLV-III has a direct role in T-cell killing by this virus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fisher, A G -- Ratner, L -- Mitsuya, H -- Marselle, L M -- Harper, M E -- Broder, S -- Gallo, R C -- Wong-Staal, F -- New York, N.Y. -- Science. 1986 Aug 8;233(4764):655-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3014663" target="_blank"〉PubMed〈/a〉
    Keywords: Acquired Immunodeficiency Syndrome/*microbiology ; Cloning, Molecular ; Deltaretrovirus/*genetics/pathogenicity ; Humans ; Mutation ; Nucleic Acid Hybridization ; RNA, Viral/genetics ; T-Lymphocytes/microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-03-31
    Description: C/EBP is a rat liver nuclear protein capable of sequence-specific interaction with DNA. The DNA sequences to which C/EBP binds in vitro have been implicated in the control of messenger RNA synthesis. It has therefore been predicted that C/EBP will play a role in regulating gene expression in mammalian cells. The region of the C/EBP polypeptide required for direct interaction with DNA has been identified and shown to bear amino acid sequence relatedness with the product of the myc, fos, and jun proto-oncogenes. The arrangement of these related amino acid sequences led to the prediction of a new structural motif, termed the "leucine zipper," that plays a role in facilitating sequence-specific interaction between protein and DNA. Experimental tests now provide support for the leucine zipper hypothesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Landschulz, W H -- Johnson, P F -- McKnight, S L -- New York, N.Y. -- Science. 1989 Mar 31;243(4899):1681-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Carnegie Institution of Washington, Department of Embryology, Baltimore, MD 21210.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2494700" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; CCAAT-Enhancer-Binding Proteins ; Cross-Linking Reagents ; DNA/*metabolism ; Glutaral ; Leucine ; Liver/*analysis ; Macromolecular Substances ; Molecular Weight ; Mutation ; Nuclear Proteins/genetics/*metabolism ; Protein Conformation ; Rats ; Repetitive Sequences, Nucleic Acid ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1989-01-27
    Description: Embryonal carcinoma (EC) cell lines are models for early cells in mouse embryogenesis. A 300-base pair fragment of the heavy chain enhancer was inactive in F9 EC cells, unlike in other nonlymphoid cells where it has significant activity. Alterations of the octamer motif increased enhancer activity. Nuclear extracts from F9 cells contained an octamer binding protein (NF-A3) that was unique to EC cells; the amount of NF-A3 decreased upon differentiation. It is proposed that NF-A3 represses specific regulatory sequences that contain the octamer motif. Thus, the same DNA sequence mediates either negative or positive transcriptional effects, depending on the cell type.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lenardo, M J -- Staudt, L -- Robbins, P -- Kuang, A -- Mulligan, R C -- Baltimore, D -- CA 01074/CA/NCI NIH HHS/ -- HD0063/HD/NICHD NIH HHS/ -- HL37569/HL/NHLBI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1989 Jan 27;243(4890):544-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Cambridge, MA 02142.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2536195" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bucladesine/pharmacology ; Cell Differentiation ; DNA/metabolism ; Embryonal Carcinoma Stem Cells ; *Enhancer Elements, Genetic ; Immunoglobulin Heavy Chains/*genetics ; Macromolecular Substances ; Mice ; Mutation ; Neoplastic Stem Cells/*metabolism ; RNA, Messenger/biosynthesis ; Regulatory Sequences, Nucleic Acid ; Repressor Proteins/genetics ; Transcription, Genetic ; Transfection ; Tretinoin/pharmacology ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-06-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marx, J L -- New York, N.Y. -- Science. 1989 Jun 16;244(4910):1254, 1256.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2734608" target="_blank"〉PubMed〈/a〉
    Keywords: Acquired Immunodeficiency Syndrome/*prevention & control ; Animals ; HIV Antibodies/*biosynthesis ; HIV-1/*immunology ; Humans ; Mutation ; Pan troglodytes ; Vaccines, Inactivated/immunology ; Viral Vaccines/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1989-07-21
    Description: Mammalian glucocorticoid receptors enhance transcription from linked promoters by binding to glucocorticoid response element (GRE) DNA sequences. Understanding the mechanism of receptor action will require biochemical studies with purified components. Enhancement was observed in vitro with derivatives of the receptor that were expressed in Escherichia coli, purified, and added to a cell-free extract from Drosophila embryo nuclei. Transcription from promoters linked to one or multiple GREs was selectively enhanced by as much as six times. The effect was weaker with only one GRE, and enhancement was abolished by a point mutation that inactivates the GRE in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Freedman, L P -- Yoshinaga, S K -- Vanderbilt, J N -- Yamamoto, K R -- New York, N.Y. -- Science. 1989 Jul 21;245(4915):298-301.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0448.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2473529" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cloning, Molecular ; DNA/genetics/metabolism ; Drosophila melanogaster ; Mutation ; Promoter Regions, Genetic ; RNA/biosynthesis ; Rats ; Receptors, Glucocorticoid/*genetics/isolation & purification/metabolism ; Templates, Genetic ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1989-02-03
    Description: The nitrogen regulatory (NtrC) protein of enteric bacteria, which binds to sites that have the properties of transcriptional enhancers, is known to activate transcription by a form of RNA polymerase that contains the NtrA protein (sigma 54) as sigma factor (referred to as sigma 54-holoenzyme). In the presence of adenosine triphosphate, the NtrC protein catalyzes isomerization of closed recognition complexes between sigma 54-holoenzyme and the glnA promoter to open complexes in which DNA in the region of the transcription start site is locally denatured. NtrC is not required subsequently for maintenance of open complexes or initiation of transcription.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Popham, D L -- Szeto, D -- Keener, J -- Kustu, S -- GM38361/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1989 Feb 3;243(4891):629-35.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, University of California, Berkley 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2563595" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/analogs & derivatives/metabolism/pharmacology ; *Bacterial Proteins ; Base Sequence ; Binding Sites ; DNA, Bacterial/metabolism ; DNA-Binding Proteins/*metabolism ; DNA-Directed RNA Polymerases/metabolism ; Deoxyribonuclease I ; *Enhancer Elements, Genetic ; Glutamate-Ammonia Ligase/genetics ; Heparin/pharmacology ; Molecular Sequence Data ; Mutation ; PII Nitrogen Regulatory Proteins ; Phosphorylation ; Promoter Regions, Genetic ; Salmonella typhimurium/*genetics ; Sigma Factor/metabolism ; *Trans-Activators ; Transcription Factors ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1989-03-10
    Description: An analysis of the aminoacylation kinetics of unmodified yeast tRNAPhe mutants revealed that five single-stranded nucleotides are important for its recognition by yeast phenylalanyl-tRNA synthetase, provided they were positioned correctly in a properly folded tRNA structure. When four other tRNAs were changed to have these five nucleotides, they became near-normal substrates for the enzyme.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sampson, J R -- DiRenzo, A B -- Behlen, L S -- Uhlenbeck, O C -- GM 37552/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1989 Mar 10;243(4896):1363-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, University of Colorado, Boulder 80309.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2646717" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acyl-tRNA Synthetases/*metabolism ; Base Sequence ; Escherichia coli/genetics ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Nucleic Acid Conformation ; Phenylalanine-tRNA Ligase/*metabolism ; Plants/genetics ; RNA, Transfer, Amino Acid-Specific/*genetics ; RNA, Transfer, Phe/*genetics/metabolism ; Schizosaccharomyces/genetics ; Transcription, Genetic ; Triticum/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...