ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2022
  • 1995-1999  (14)
  • 1985-1989  (18)
  • 1975-1979
  • 1996  (14)
  • 1985  (18)
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 8 (1985), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract Growth-chamber cultivated Raphanus plants accumulate nitrate during their vegetative growth. After 25 days of growth at a constant supply to the roots of 1 mol m−3 (NO−3) in a balanced nutrient solution, the oldest leaves (eight-leaf stage) accumulated 2.5% NO−3-nitrogen (NO3-N) in their lamina, and almost 5% NO3-N in their petioles on a dry weight basis. This is equivalent to approximately 190 and 400 mol−3 m−3 concentration of NO−3 in the lamina and the petiole, respectively, as calculated on a total tissue water content basis. Measurements were made of root NO−3 uptake, NO−3 fluxes in the xylem, nitrate uptake by the mesophyll cells, and nitrate reduction as measured by an in vivo test. NO−3 uptake by roots and mesophyll cells was greater in the light than in the dark. The NO−3 concentration in the xylem fluid was constant with leaf age, but showed a distinct daily variation as a result of the independent fluxes of root uptake, transpiration and mesophyll uptake. NO−3 was reduced in the leaf at a higher rate in the light than in the dark. The reduction was inhibited at the high concentrations calculated to exist in the mesophyll vacuoles, but reduction continued at a low rate, even when there was no supply from the incubation medium. Sixty-four per cent of the NO−3 influx was turned into organic nitrogen, with the remaining NO−3 accumulating in both the light and the dark.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 19 (1996), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: We studied the effects of variations of water flux through the plant, of diurnal variation of water flux, and of variation of vapour pressure deficit at the leaf on compensation pressure in the Passioura-type pressure chamber, the composition of the xylem sap and leaf conductance in Ricinus communis. The diurnal pattern of compensation pressure showed stress relaxation during the night hours, while stress increased during the day, when water limitation increased. Thus compensation pressure was a good measure of the momentary water status of the root throughout the day and during drought. The bulk soil water content at which predawn compensation pressure and abscisic acid concentration in the xylem sap increased and leaf conductance decreased, was high when the water usage of the plant was high. For all xylem sap constituents analysed, variations in concentrations during the day were larger than changes in mean concentrations with drought. Mean concentrations of phosphate and the pH of the xylem sap declined with drought, while nitrate concentration remained constant. When the measurement leaf was exposed to a different VPD from the rest of the plant, leaf conductance declined by 400mmol m−2 s−1 when compensation pressure increased by 1 MPa in all treatments. The compensation pressure needed to keep the shoot turgid, leaf conductance and the abscisic acid concentration in the xylem were linearly related. This was also the case when the highly dynamic development of stress was taken into account.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1939
    Keywords: Terrestrial biomes ; Cumulative root fraction ; Root biomass ; Rooting density ; Soil depth
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Understanding and predicting ecosystem functioning (e.g., carbon and water fluxes) and the role of soils in carbon storage requires an accurate assessment of plant rooting distributions. Here, in a comprehensive literature synthesis, we analyze rooting patterns for terrestrial biomes and compare distributions for various plant functional groups. We compiled a database of 250 root studies, subdividing suitable results into 11 biomes, and fitted the depth coefficient β to the data for each biome (Gale and Grigal 1987). β is a simple numerical index of rooting distribution based on the asymptotic equation Y=1-βd, where d = depth and Y = the proportion of roots from the surface to depth d. High values of β correspond to a greater proportion of roots with depth. Tundra, boreal forest, and temperate grasslands showed the shallowest rooting profiles (β=0.913, 0.943, and 0.943, respectively), with 80–90% of roots in the top 30 cm of soil; deserts and temperate coniferous forests showed the deepest profiles (β=0.975 and 0.976, respectively) and had only 50% of their roots in the upper 30 cm. Standing root biomass varied by over an order of magnitude across biomes, from approximately 0.2 to 5 kg m-2. Tropical evergreen forests had the highest root biomass (5 kg m-2), but other forest biomes and sclerophyllous shrublands were of similar magnitude. Root biomass for croplands, deserts, tundra and grasslands was below 1.5 kg m-2. Root/shoot (R/S) ratios were highest for tundra, grasslands, and cold deserts (ranging from 4 to 7); forest ecosystems and croplands had the lowest R/S ratios (approximately 0.1 to 0.5). Comparing data across biomes for plant functional groups, grasses had 44% of their roots in the top 10 cm of soil. (β=0.952), while shrubs had only 21% in the same depth increment (β=0.978). The rooting distribution of all temperate and tropical trees was β=0.970 with 26% of roots in the top 10 cm and 60% in the top 30 cm. Overall, the globally averaged root distribution for all ecosystems was β=0.966 (r 2=0.89) with approximately 30%, 50%, and 75% of roots in the top 10 cm, 20 cm, and 40 cm, respectively. We discuss the merits and possible shortcomings of our analysis in the context of root biomass and root functioning.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1939
    Keywords: Patagonia-vegetation ; Root distribution ; 13C-, 18O-, D-Isotope composition ; Water ; Plant succession
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Above-and belowground biomass distribution, isotopic composition of soil and xylem water, and carbon isotope ratios were studied along an aridity gradient in Patagonia (44–45°S). Sites, ranging from those with Nothofagus forest with high annual rainfall (770 mm) to Nothofagus scrub (520 mm), Festuca (290 mm) and Stipa (160 mm) grasslands and into desert vegetation (125 mm), were chosen to test whether rooting depth compensates for low rainfall. Along this gradient, both mean above-and belowground biomass and leaf area index decreased, but average carbon isotope ratios of sun leaves remained constant (at-27‰), indicating no major differences in the ratio of assimilation to stomatal conductance at the time of leaf growth. The depth of the soil horizon that contained 90% of the root biomass was similar for forests and grasslands (about 0.80–0.50 m), but was shallower in the desert (0.30 m). In all habitats, roots reached water-saturated soils or ground water at 2–3 m depth. The depth profile of oxygen and hydrogen isotope ratios of soil water corresponded inversely to volumetric soil water contents and showed distinct patterns throughout the soil profile due to evaporation, water uptake and rainfall events of the past year. The isotope ratios of soil water indicated that high soil moisture at 2–3 m soil depth had originated from rainy periods earlier in the season or even from past rainy seasons. Hydrogen and oxygen isotope ratios of xylem water revealed that all plants used water from recent rain events in the topsoil and not from water-saturated soils at greater depth. However, this study cannot explain the vegetation zonation along the transect on the basis of water supply to the existing plant cover. Although water was accessible to roots in deeper soil layers in all habitats, as demonstrated by high soil moisture, earlier rain events were not fully utilized by the current plant cover during summer drought. The role of seedling establishment in determining species composition and vegetation type, and the indirect effect of seedling establishment on the use of water by fully developed plant cover, are discussed in relation to climate change and vegetation modelling.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1939
    Keywords: Deep roots function ; Terrestrial vegetation ; Biomes ; Plant forms ; Root depth
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The depth at which plants are able to grow roots has important implications for the whole ecosystem hydrological balance, as well as for carbon and nutrient cycling. Here we summarize what we know about the maximum rooting depth of species belonging to the major terrestrial biomes. We found 290 observations of maximum rooting depth in the literature which covered 253 woody and herbaceous species. Maximum rooting depth ranged from 0.3 m for some tundra species to 68 m for Boscia albitrunca in the central Kalahari; 194 species had roots at least 2 m deep, 50 species had roots at a depth of 5 m or more, and 22 species had roots as deep as 10 m or more. The average for the globe was 4.6±0.5 m. Maximum rooting depth by biome was 2.0±0.3 m for boreal forest. 2.1±0.2 m for cropland, 9.5±2.4 m for desert, 5.2±0.8 m for sclerophyllous shrubland and forest, 3.9±0.4 m for temperate coniferous forest, 2.9±0.2 m for temperate deciduous forest, 2.6±0.2 m for temperate grassland, 3.7±0.5 m for tropical deciduous forest, 7.3±2.8 m for tropical evergreen forest, 15.0±5.4 m for tropical grassland/savanna, and 0.5±0.1 m for tundra. Grouping all the species across biomes (except croplands) by three basic functional groups: trees, shrubs, and herbaceous plants, the maximum rooting depth was 7.0±1.2 m for trees, 5.1±0.8 m for shrubs, and 2.6±0.1 m for herbaceous plants. These data show that deep root habits are quite common in woody and herbaceous species across most of the terrestrial biomes, far deeper than the traditional view has held up to now. This finding has important implications for a better understanding of ecosystem function and its application in developing ecosystem models.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-1939
    Keywords: C4 photosynthesis ; δ13C values ; Grass flora of Namibia ; Poaceae ; Geographic distribution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The grass flora of Namibia (374 species in 110 genera) shows surprisingly little variation in δ13C values along a rainfall gradient (50–600 mm) and in different habitat conditions. However, there are significant differences in the δ13C values between the metabolic types of the C4 photosynthetic pathway. NADP-ME-type C4 species exhibit the highest δ13C values (−11.7 ‰) and occur mainly in regions with high rainfall. NAD-ME-type C4 species have significantly lower δ13C values (−13.4 ‰) and dominate in the most arid part of the precipitation regime. PCK-type C4 species play an intermediate role (−12.5 ‰) and reach a maximum abundance in areas of intermediate precipitation. This pattern is also evident in genera containing species of different metabolic types. Within the same genus NAD species reach more negative δ13C values than PCK species and δ13C values decreased with rainfall. Also in Aristida, with NADP-ME-type photosynthesis, δ13C values decreased from −11 ‰ in the inland region (600 mm precipitation) to −15 ‰ near the coast (150 mm precipitation), which is a change in discrimination which is otherwise associated by a change in metabolism. The exceptional C3 species Eragrostis walteri and Panicum heterostachyum are coastal species experiencing 50 mm precipitation only. Many of the rare species and monotypic genera grow in moist habitats rather than in the desert, and they are not different in their carbon isotope ratios from the more common flora. The role of species diversity with respect to habitat occupation and carbon metabolism is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-2048
    Keywords: Cell wall relaxation ; Cell elongation ; Glycine (growth control) ; Turgor pressure ; Water potential
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A new guillotine thermocouple psychrometer was used to make continuous measurements of water potential before and after the excision of elongating and mature regions of darkgrown soybean (Glycine max L. Merr.) stems. Transpiration could not occur, but growth took place during the measurement if the tissue was intact. Tests showed that the instrument measured the average water potential of the sampled tissue and responded rapidly to changes in water potential. By measuring tissue osmotic potential (Ψ s ), turgor pressure (Ψ p ) could be calculated. In the intact plant, Ψ s and Ψ p were essentially constant for the entire 22 h measurement, but Ψ s was lower and Ψ p higher in the elongating region than in the mature region. This caused the water potential in the elongating region to be lower than in the mature region. The mature tissue equilibrated with the water potential of the xylem. Therefore, the difference in water potential between mature and elongating tissue represented a difference between the xylem and the elongating region, reflecting a water potential gradient from the xylem to the epidermis that was involved in supplying water for elongation. When mature tissue was excised with the guillotine, Ψ s and Ψ p did not change. However, when elongating tissue was excised, water was absorbed from the xylem, whose water potential decreased. This collapsed the gradient and prevented further water uptake. Tissue Ψ p then decreased rapidly (5 min) by about 0.1 MPa in the elongating tissue. The Ψ p decreased because the cell walls relaxed as extension, caused by Ψ p , continued briefly without water uptake. The Ψ p decreased until the minimum for wall extension (Y) was reached, whereupon elongation ceased. This was followed by a slow further decrease in Y but no additional elongation. In elongating tissue excised with mature tissue attached, there was almost no effect on water potential or Ψ p for several hours. Nevertheless, growth was reduced immediately and continued at a decreasing rate. In this case, the mature tissue supplied water to the elongating tissue and the cell walls did not relax. Based on these measurements, a theory is presented for simultaneously evaluating the effects of water supply and water demand associated with growth. Because wall relaxation measured with the psychrometer provided a new method for determining Y and wall extensibility, all the factors required by the theory could be evaluated for the first time in a single sample. The analysis showed that water uptake and wall extension co-limited elongation in soybean stems under our conditions. This co-limitation explains why elongation responded immediately to a decrease in the water potential of the xylem and why excision with attached mature tissue caused an immediate decrease in growth rate without an immediate change in Ψ p
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary In Australia, diurnal courses of leaf conductance and transpiration of hemiparasitic mistletoes (Loranthaceae) and their hosts were measured using steady-state porometers under conditions of partial drought and high evaporative demand. The sites spanned a diversity of climatic regions ranging from the subtropical arid zone with winter rainfall, through the subtropical arid zone with summer rainfall to the tropical summer rainfall zone. With one exception (Acacia farnesiana with deciduous leaves), the hosts were trees or shrubs with evergreen, sclerophyllous leaves or phyllodes. The measurements confirm previous observations that mistletoes transpire at higher rates than their hosts. For adult leaves from all of the 18 different host/mistletoe pairs investigated, the daily average leaf conductances were higher in the parasites than in their hosts. The ratios ranged from 1.5 to 7.9. In the most extreme case,Amyema maidenii had a daily rate of water loss 8.9 times higher than its hostAcacia cowleana. Hoever, the parasites did not exhibit unlimited transpiration. Despite high water loss rates, leaf conductance showed large and consistent changes during the course of the day, indicating definite stomatal regulation. The typical diurnal pattern of conductance in both mistletoes and hosts consisted of an early morning peak followed by a continuous decrease throughout the remainder of the day. There was no abrupt decrease in leaf conductance of the parasites that might be interpreted as a threshold response with respect to internal water potential. In most cases, the continuous stomatal closure occurred without substantial changes in leaf water potential over a time span of several hours. The decrease in leaf conductance was correlated with an increase in leaf-to-air water vapor difference, which was associated with increasing leaf temperatures. It seems probable that external humidity plays a major role in the stomatal response. Diurnal courses of leaf conductance of the host/parasite pairs usually showed similar general patterns, even when the absolute rates were quite different. Thus, mistletoes not only control their water loss by stomatal action but this regulation seems to occur in coordination with the stomatal response of their hosts. The integrated mistletoe/host system must also endure severe drought conditions. Controlled water use is necessary for long-term survival of the host. Assuming stomatal behavior in the host is well adapted to ensure its existence, then similar performance in the mistletoe would promote survival of both host and parasite.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Maximal rates of CO2 assimilation of 8–11 μmol m-2 s-1 at ambient CO2 concentration were measured for Dendrosenecio keniodendron, D. brassica, Lobelia telekii and L. keniensis during the day in the natural habitat of these plants at 4,200 m elevation on Mt. Kenya. Even at these maximal rates, the CO2 uptake of all species was found to correspond to the linear portion of the CO2 response curve, with a calculated stomatal limitation for CO2 diffusion of 42%. Photosynthesis was strongly reduced at temperatures above 15° C. In contrast to this sensitivity to high temperatures, frozen leaves regained full photosynthetic capacity immediately after thawing. Stomata responded to dry air, but not to low leaf water potentials which occurred in cold leaves and at high transpiration rates. During the day reduced rates of CO2 uptake were associated with reduced light interception due to the erect posture of the rosette leaves and with high temperatures. Stomata closed at vapour pressure deficits which were comparable in magnitude to those characteristic of many lowland habitats (40 mPa Pa-1).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The responses of leaf water potential, leaf conductance, transpiration rate and net photosynthetic rate to vapour pressure deficits varying from 10 to 30 Pa kPa-1 were followed in Helianthus annuus as the extractable soil water decreased. With a vapour pressure deficit of 25 Pa kPa-1 around the entire plant as the soil water content decreased, the leaf conductance and transpiration rate showed a strong closing response to leaf water potential at a value of-0.65 MPa, whereas with a vapour pressure deficit of 10 Pa kPa-1 around the entire plant, the rate of transpiration and leaf conductance decreased almost linearly as the leaf water potential decreased from-0.4 to-1.0 MPa. Increasing the vapour pressure deficit from 10 to 30 Pa kPa-1 in 5 Pa kPa-1 steps decreased the leaf conductance by a similar proportion at all extractable soil water contents. At high soil water contents, the decrease in conductance with leaf water potential was greater when the vapour pressure deficit was increased than when it was not, indicating a direct influence of vapour pressure deficit on the stomata. The rate of net photosynthesis decreased to a smaller degree than the leaf conductance when the vapour pressure deficit around the leaf was varied. Overall, the net photosynthetic rate decreased almost linearly from 20 to 25 μmol m-2 s-1 at-0.3 MPa to 5 μmol m-2 s-1 at-1.2 MPa. As the soil water decreased, the internal carbon dioxide partial pressure was maintained between 14 and 25 Pa. No unique relationship between leaf conductance, transpiration rate or photosynthetic rate and leaf water potential was observed, but in all experiments leaf conductance and the rate of net photosynthesis decreased when about two-thirds of the extractable water in the solid had been utilized irrespective of the leaf water potential. We conclude that soil water status, not leaf water status, affects the stomatal behaviour and photosynthesis of H. annuus.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...