ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Weitere Quellen  (4)
  • 2020-2024
  • 2005-2009  (4)
  • 2007  (3)
  • 2006  (1)
  • 1984
Sammlung
Erscheinungszeitraum
Jahr
  • 1
    Publikationsdatum: 2019-07-13
    Beschreibung: A finite element computational fluids dynamics-based aeroservoelastic analysis methodology is presented in this paper, in which both structural and fluids discretization are achieved by the finite element method, and their interaction is modeled by the transpiration boundary condition technique. In the fluids discipline either inviscid or viscous flow may be accounted for, usually employing unstructured grids.Adescription of a novel viscous flow solver employing unstructured grids is given in detail. Provisions are made for digital as well as analog controllers. These new aeroservoelastic analysis techniques are next applied for the solution of a number of example problems including the novel Hyper-X launch vehicle. Experimental and actual flight test data are also compared with analysis results that signify to the efficacy and accuracy of the newly developed solution procedures.
    Schlagwort(e): Launch Vehicles and Launch Operations
    Materialart: Paper 884 , AIAA Aerospace Science Conference and Exhibit; Jan 05, 2004 - Jan 09, 2004; Reno, NV; United States|AIAA Journal; 45; 7; 1459-1471
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2019-07-19
    Beschreibung: The lunar architecture for future sortie and outpost missions will require humans to serve on the lunar surface considerably longer than the Apollo moon missions. Although the Apollo crewmembers sustained few injuries during their brief lunar surface activity, injuries did occur and are a concern for the longer lunar stays. Interestingly, lunar medical contingency plans were not developed during Apollo. In order to develop an evidence-base for handling a medical contingency on the lunar surface, a simulation using the moon-Mars analog environment at Devon Island, Nunavut, high Canadian Arctic was conducted. Objectives of this study included developing an effective management strategy for dealing with an incapacitated crewmember on the lunar surface, establishing audio/visual and biomedical data connectivity to multiple centers, testing rescue/extraction hardware and procedures, and evaluating in suit increased oxygen consumption. Methods: A review of the Apollo lunar surface activities and personal communications with Apollo lunar crewmembers provided the knowledge base of plausible scenarios that could potentially injure an astronaut during a lunar extravehicular activity (EVA). Objectives were established to demonstrate stabilization and transfer of an injured crewmember and communication with ground controllers at multiple mission control centers. Results: The project objectives were successfully achieved during the simulation. Among these objectives were extraction from a sloped terrain by a two-member crew in a 1 g analog environment, establishing real-time communication to multiple centers, providing biomedical data to flight controllers and crewmembers, and establishing a medical diagnosis and treatment plan from a remote site. Discussion: The simulation provided evidence for the types of equipment and methods for performing extraction of an injured crewmember from a sloped terrain. Additionally, the necessary communications infrastructure to connect multiple centers worldwide was established from a remote site. The surface crewmembers were confronted with a number of unexpected scenarios including environmental, communications, EVA suit, and navigation challenges during the course of the simulation which provided insight into the challenges of carrying out a medical contingency in an austere environment. The knowledge gained from completing the objectives will be incorporated into the exploration medical requirements involving an incapacitated astronaut on the lunar surface.
    Schlagwort(e): Aerospace Medicine
    Materialart: Humans in Space: 2007; May 20, 2007 - May 24, 2007; Beijing; China
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2019-07-19
    Beschreibung: Integration of multi-sensory inputs to detect tilts relative to gravity is critical for sensorimotor control of upright orientation. Displaying body orientation using electrotactile feedback to the tongue has been developed by Bach-y-Rita and colleagues as a sensory aid to maintain upright stance with impaired vestibular feedback. MacDougall et al. (2006) recently demonstrated that unpredictably varying Galvanic vestibular stimulation (GVS) significantly increased anterior-posterior (AP) sway during rotational sway referencing with eyes closed. The purpose of this study was to assess the influence of electrotactile feedback on postural control performance with pseudorandom binaural bipolar GVS. Postural equilibrium was measured with a computerized hydraulic platform in 10 healthy adults (6M, 4F, 24-65 y). Tactile feedback (TF) of pitch and roll body orientation was derived from a two-axis linear accelerometer mounted on a torso belt and displayed on a 144-point electrotactile array held against the anterior dorsal tongue (BrainPort, Wicab, Inc., Middleton, WI). Subjects were trained to use TF by voluntarily swaying to draw figures on their tongue, both with and without GVS. Subjects were required to keep the intraoral display in their mouths on all trials, including those that did not provide TF. Subjects performed 24 randomized trials (20 s duration with eyes closed) including four support surface conditions (fixed, rotational sway-referenced, translating the support surface proportional to AP sway, and combined rotational-translational sway-referencing), each repeated twice with and without GVS, and with combined GVS and TF. Postural performance was assessed using deviations from upright (peak-to-peak and RMS sway) and convergence toward stability limits (time and distance to base of support boundaries). Postural stability was impaired with GVS in all platform conditions, with larger decrements in performance during trials with rotation sway-referencing. Electrotactile feedback improved performance with GVS toward non-GVS levels, again with the greatest improvement during trials with rotation sway-referencing. These results demonstrate the effectiveness of tongue electrotactile feedback in providing sensory substitution to maintain postural stability with distorted vestibular input.
    Schlagwort(e): Life Sciences (General)
    Materialart: Association for Research in Otolaryngology 2007 MidWinter Meting; Feb 10, 2007 - Feb 15, 2007; Denver, CO; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2012-02-23
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...