ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Dead Sea; Archaeal community  (1)
  • Estuary  (1)
  • 2015-2019  (2)
  • 1975-1979
  • 2018  (2)
  • 1977
  • 1
    Publication Date: 2021-03-29
    Description: Due to its extreme salinity and high Mg concentration the Dead Sea is characterized by a very low density of cells most of which are Archaea. We discovered several underwater fresh to brackish water springs in the Dead Sea harboring dense microbial communities. We provide the first characterization of these communities, discuss their possible origin, hydrochemical environment, energetic resources and the putative biogeochemical pathways they are mediating. Pyrosequencing of the 16S rRNA gene and community fingerprinting methods showed that the spring community originates from the Dead Sea sediments and not from the aquifer. Furthermore, it suggested that there is a dense Archaeal community in the shoreline pore water of the lake. Sequences of bacterial sulfate reducers, nitrifiers iron oxidizers and iron reducers were identified as well. Analysis of white and green biofilms suggested that sulfide oxidation through chemolitotrophy and phototrophy is highly significant. Hyperspectral analysis showed a tight association between abundant green sulfur bacteria and cyanobacteria in the green biofilms. Together, our findings show that the Dead Sea floor harbors diverse microbial communities, part of which is not known from other hypersaline environments. Analysis of the water’s chemistry shows evidence of microbial activity along the path and suggests that the springs supply nitrogen, phosphorus and organic matter to the microbial communities in the Dead Sea. The underwater springs are a newly recognized water source for the Dead Sea. Their input of microorganisms and nutrients needs to be considered in the assessment of possible impact of dilution events of the lake surface waters, such as those that will occur in the future due to the intended establishment of the Red Sea - Dead Sea water conduit.
    Keywords: Dead Sea; Archaeal community ; 551
    Language: English
    Type: article , publishedVersion
    Format: 21
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Earth Surface 122 (2017): 2042–2063, doi:10.1002/2017JF004337.
    Description: Observations and a numerical model are used to characterize sediment transport in the tidal Hudson River. A sediment budget over 11 years including major discharge events indicates the tidal fresh region traps about 40% of the sediment input from the watershed. Sediment input scales with the river discharge cubed, while seaward transport in the tidal river scales linearly, so the tidal river accumulates sediment during the highest discharge events. Sediment pulses associated with discharge events dissipate moving seaward and lag the advection speed of the river by a factor of 1.5 to 3. Idealized model simulations with a range of discharge and settling velocity were used to evaluate the trapping efficiency, transport rate, and mean age of sediment input from the watershed. The seaward transport of suspended sediment scales linearly with discharge but lags the river velocity by a factor that is linear with settling velocity. The lag factor is 30–40 times the settling velocity (mm s−1), so transport speeds vary by orders of magnitude from clay (0.01 mm s−1) to coarse silt (1 mm s−1). Deposition along the tidal river depends strongly on settling velocity, and a simple advection-reaction equation represents the loss due to settling on depositional shoals. The long-term discharge record is used to represent statistically the distribution of transport times, and time scales for settling velocities of 0.1 mm s−1 and 1 mm s−1 range from several months to several years for transport through the tidal river and several years to several decades through the estuary.
    Description: Hudson River Foundation Grant Number: 004/13A; National Science Foundation Grant Number: 1325136
    Description: 2018-05-02
    Keywords: Tidal river ; Sediment age ; Trapping efficiency ; Estuary ; Sediment transport
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...