ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lunar and Planetary Science and Exploration  (123)
  • AIRCRAFT DESIGN, TESTING AND PERFORMANCE
  • ASTROPHYSICS
  • Life and Medical Sciences
  • MATERIALS, METALLIC
  • 2010-2014  (66)
  • 2005-2009  (57)
  • 1975-1979
  • 1970-1974
  • 1950-1954  (13)
  • 1925-1929
  • 2010  (66)
  • 2007  (57)
  • 1953  (13)
Collection
Keywords
Publisher
Years
  • 2010-2014  (66)
  • 2005-2009  (57)
  • 1975-1979
  • 1970-1974
  • 1950-1954  (13)
  • +
Year
  • 1
    Publication Date: 2019-07-13
    Description: Several hydrated silicate deposits on Mars are observed within craters and are interpreted as excavated Noachian material. Toro crater (71.8 deg E, 17.0 deg N), located on the northern edge of the Syrtis Major Volcanic Plains, shows spectral and morphologic evidence of impact-induced hydrothermal activity. Spectroscopic observations were used to identify extensive hydrated silicate deposits, including prehnite, chlorites, smectites, and opaline material, a suite of phases that frequently results from hydrothermal alteration in terrestrial craters and also expected on Mars from geochemical modeling of hydrothermal environments. When combined with altimetry and high-resolution imaging data, these deposits appear associated predominantly with the central uplift and with portions of the northern part of the crater floor. Detailed geologic mapping of these deposits reveals geomorphic features that are consistent with hydrothermal activity that followed the impact event, including vent-like and conical mound structures, and a complex network of tectonic structures caused by fluid interactions such as fractures and joints. The crater age has been calculated from the cumulative crater size-frequency distributions and is found to be Early Hesperian. The evidence presented here provides support for impact-induced hydrothermal activity in Toro crater, that extends phyllosilicate formation processes beyond the Noachian era.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Icarus; 208; 667-683
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Based on published lunar soil grain size distribution data, we estimate that 1-3% of the mass of typical mature lunar soils is comprised of grains less than 2.5 micrometers in diameter. These particles are in the respirable range (small enough to be inhaled). Estimates are used because the early methods of obtaining grain size distributions did not give reliable results below about 10 micrometers. Grain size analyses of Apollo 11 soil 10084 by a laser diffraction technique shows that this soil contains roughly 2% by volume in the respirable grain size, in agreement with our prior estimate.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-19518 , Lunar and Planetary Science Conference; Mar 01, 2010 - Mar 05, 2010; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: During the Apollo missions, crewmembers were briefly exposed to dust in the lunar module, brought in after extravehicular activity. When the lunar ascent module returned to micro-gravity, the dust that had settled on the floor now floated into the air, causing eye discomfort and occasional respiratory symptoms. Because our goal is to set an exposure standard for 6 months of episodic exposure to lunar dust for crew on the lunar surface, these brief exposures of a few days are not conclusive. Based on experience with industrial minerals such as sandblasting quartz, an exposure of several months may cause serious damage, while a short exposure may cause none. The detailed characteristics of sub-micrometer lunar dust are only poorly known, and this is the size range of particles that are of greatest concern. We have developed a method for extracting respirable dust (〈2.5 micron) from Apollo lunar soils. This method meets stringent requirements that the soil must be kept dry, exposed only to pure nitrogen, and must conserve and recover the maximum amount of both respirable dust and coarser soil. In addition, we have developed a method for grinding coarser lunar soil to produce sufficient respirable soil for animal toxicity testing while preserving the freshly exposed grain surfaces in a pristine state.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-19517 , Lunar and Planetary Science Conference; Mar 01, 2010 - Mar 05, 2010; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Philadelphia : Wiley-Blackwell
    Journal of Cellular and Comparative Physiology 42 (1953), S. 343-357 
    ISSN: 0095-9898
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-26
    Description: Within the framework of the International Lunar Surface Operation - In-Situ Resource Utilization Analogue Test held on January 27 - February 11, 2010 on the Mauna Kea volcano in Hawaii, a number of scientific instrument teams collaborated to characterize the field site and test instrument capabilities outside laboratory environments. In this paper, we provide a geological setting for this new field-test site, a description of the instruments that were tested during the 2010 ILSO-ISRU field campaign, and a short discussion for each instrument about the validity and use of the results obtained during the test. These results will form a catalogue that may serve as reference for future test campaigns. In this paper we provide a description and regional geological setting for a new field analogue test site for lunar resource exploration, and discuss results obtained from the 2010 ILSO-ISRU field campaign as a reference for future field-testing at this site. The following instruments were tested: a multispectral microscopic imager, MMI, a Mossbauer spectrometer, an evolved gas analyzer, VAPoR, and an oxygen and volatile extractor called RESOLVE. Preliminary results show that the sediments change from dry, organic-poor, poorly-sorted volcaniclastic sand on the surface, containing basalt, iron oxides and clays, to more water- and organic-rich, fine grained, well-sorted volcaniclastic sand, primarily consisting of iron oxides and depleted of basalt and clays. Furthermore, drilling experiments showed a very close correlation between drilling on the Moon and drilling at the test site. The ILSO-ISRU test site was an ideal location for testing strategies for in situ resource exploration at the lunar or martian surface.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Dust particles released from comet 81P/Wild-2 were captured in silica aerogel on-board the STARDUST spacecraft and returned to Earth on January 15, 2006. STARDUST recovered thousands of particles ranging in size from 1 to 100 micrometers. During the six month Preliminary Examination period an international consortium of 180 scientists investigated their mineralogy/petrology, organic/inorganic chemistry, optical properties and isotopic compositions. Stardust samples are now available for research by the entire research community.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Discovery@15 Conference; Sep 19, 2007 - Sep 20, 2007; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The largest exposure of phyllosilicates on Mars occurs on the highland plains around Mawrth Vallis. This exposure extends for about 300 km southward from the edge of the dichotomy boundary, covering an area greater than 200 x 300 kilometers over an elevation range of approximately 2000 meters. At least two different types of hydrated phyllosilicates (Fe/Mg-rich and Al-rich phyllosilicates) have been identified in OMEGA data based on absorption bands near 2.3 and 2.2 micrometers, respectively. These clay-bearing units are associated with layered, indurated light-toned units with complex spatial and stratigraphic relationships, and are unconfomably overlain by a darker, indurated, more heavily cratered unit. Ongoing analysis of OMEGA (approximately 1 kilometer/pixel) and CRISM multi-spectral (MSP, 200 meters/pixel) data reveal hydrated minerals with absorptions at approximately 2.2 or 2.3 micrometers in locations up to 300 kilometers away from the borders of the previously identified extent of clay-bearing units. We seek to: 1) further constrain the mineralogy of the hydrated species identified in [5], and 2) understand spatial and stratigraphic relationships between the different hydrated minerals and the cratered plains units in which they are found. In this work we perform mineralogical and stratigraphic comparisons between units to test whether these extended units may be related, in order to establish a broad zone of alteration.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 39th Lunar and Planetary Science Conference; Mar 10, 2008 - Mar 14, 2008; League City, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: By mass, thermal plasma dominates near-earth space and strongly influences the transport of energy and mass into the earth's atmosphere. It is proposed to play an important role in modifying the strength of space weather storms by its presence in regions of magnetic reconnection in the dayside magnetopause and in the near to mid-magnetotail. Ionospheric-origin thermal plasma also represents the most significant potential loss of atmospheric mass from our planet over geological time. Knowledge of the loss of convected thermal plasma into the solar wind versus its recirculation across high latitudes and through the magnetospheric flanks into the magnetospheric tail will enable determination of the mass balance for this mass-dominant component of the Geospace system and of its influence on global magnetospheric processes that are critical to space weather prediction and hence to the impact of space processes on human technology in space and on Earth. Our proposed concept addresses this basic issue of Geospace dynamics by imaging thermal He(+) ions in extreme ultraviolet light with an instrument on the lunar surface. The concept is derived from the highly successful Extreme Ultraviolet imager (EUV) flown on the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) spacecraft. From the lunar surface an advanced EUV imager is anticipated to have much higher sensitivity, lower background noise, and higher communication bandwidth back to Earth. From the near-magnetic equatorial location on the lunar surface, such an imager would be ideally located to follow thermal He(+) ions to high latitudes, into the magnetospheric flanks, and into the magnetotail.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 2007 NASA/NAC Lunar Exploration Architecture Workshop; Feb 27, 2007 - Mar 02, 2007; Tempe, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Dust particles released from comet 81P/Wild-2 were captured in silica aerogel on-board the STARDUST spacecraft and successfully returned to the Earth on January 15, 2006. STARDUST recovered thousands of particles ranging in size from 1 to 100 micrometers. The analysis of these samples is complicated by the small total mass collected ( 〈 1mg), its entrainment in the aerogel collection medium, and the fact that the cometary dust is comprised of submicrometer minerals and carbonaceous material. During the six month Preliminary Examination period, 75 tracks were extracted from the aerogel cells , but only 25 cometary residues were comprehensively studied by an international consortium of 180 scientists who investigated their mineralogy/petrology, organic/inorganic chemistry, optical properties and isotopic compositions. These detailed studies were made possible by sophisticated sample preparation methods developed for the STARDUST mission and by recent major advances in the sensitivity and spatial resolution of analytical instruments.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science Conference; Mar 12, 2007 - Mar 16, 2007; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: A better understanding of the early impact history of the terrestrial planets has been identified one of the highest priority science goals for solar system exploration. Crystallization ages of impact melt breccias from the Apollo 16 site in the central nearside lunar highlands show a pronounced clustering of ages from 3.75-3.95 Ga, with several impact events being recognized by the association of textural groups and distinct ages. Here we present new geochemical and petrologic data for Apollo 16 crystalline breccia 67955 that document a much older impact event with an age of 4.2 Ga.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science Conference; Mar 12, 2007 - Mar 16, 2007; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...