ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Aerospace Medicine  (3)
  • 2000-2004
  • 1990-1994  (3)
  • 1940-1944
  • 1992  (3)
  • 1944
  • 1
    Publication Date: 2019-07-13
    Description: High-density, three-dimensional cell cultures are difficult to grow in vitro. The rotating-wall vessel (RWV) described here has cultured BHK-21 cells to a density of 1.1 X 10(7) cells/ml. Cells on microcarriers were observed to grow with enhanced bridging in this batch culture system. The RWV is a horizontally rotated tissue culture vessel with silicon membrane oxygenation. This design results in a low-turbulence, low-shear cell culture environment with abundant oxygenation. The RWV has the potential to culture a wide variety of normal and neoplastic cells.
    Keywords: Aerospace Medicine
    Type: Journal of tissue culture methods : Tissue Culture Association manual of cell, tissue, and organ culture procedures (ISSN 0271-8057); 14; 2; 51-7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: For several years, it has been evident that cellular radiation biology is in a necessary period of consolidation and transition (Lett 1987, 1990; Lett et al. 1986, 1987). Both changes are moving apace, and have been stimulated by studies with heavy charged particles. From the standpoint of radiation chemistry, there is now a consensus of opinion that the DNA hydration shell must be distinguished from bulk water in the cell nucleus and treated as an integral part of DNA (chromatin) (Lett 1987). Concomitantly, sentiment is strengthening for the abandonment of the classical notions of "direct" and "indirect" action (Fielden and O'Neill 1991; O'Neill 1991; O'Neill et al. 1991; Schulte-Frohlinde and Bothe 1991 and references therein). A layer of water molecules outside, or in the outer edge of, the DNA (chromatin) hydration shell influences cellular radiosensitivity in ways not fully understood. Charge and energy transfer processes facilitated by, or involving, DNA hydration must be considered in rigorous theories of radiation action on cells. The induction and processing of double stand breaks (DSBs) in DNA (chromatin) seem to be the predominant determinants of the radiotoxicity of normally radioresistant mammalian cells, the survival curves of which reflect the patterns of damage induced and the damage present after processing ceases, and can be modelled in formal terms by the use of reaction (enzyme) kinetics. Incongruities such as sublethal damage are neither scientifically sound nor relevant to cellular radiation biology (Calkins 1991; Lett 1990; Lett et al. 1987a). Increases in linear energy transfer (LET infinity) up to 100-200 keV micron-1 cause increases in the extents of neighboring chemical and physical damage in DNA denoted by the general term DSB. Those changes are accompanied by decreasing abilities of cells normally radioresistant to sparsely ionizing radiations to process DSBs in DNA and chromatin and to recover from radiation exposure, so they make significant contributions to the relative biological effectiveness (RBE) of a given radiation.(ABSTRACT TRUNCATED AT 400 WORDS).
    Keywords: Aerospace Medicine
    Type: Radiation and environmental biophysics (ISSN 0301-634X); Volume 31; 4; 257-77
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: Operation Everest II was designed to examine the physiological responses to gradual decompression simulating an ascent of Mt Everest (8,848 m) to an inspired PO2 of 43 mmHg. The principal studies conducted were cardiovascular, respiratory, muscular-skeletal and metabolic responses to exercise. Eight healthy males aged 21-31 years began the "ascent" and six successfully reached the "summit", where their resting arterial blood gases were PO2 = 30 mmHg and PCO2 = 11 mmHg, pH = 7.56. Their maximal oxygen uptake decreased from 3.98 +/- 0.2 L/min at sea level to 1.17 +/- 0.08 L/min at PIO2 43 mmHg. The principal factors responsible for oxygen transport from the atmosphere to tissues were (1) Alveolar ventilation--a four fold increase. (2) Diffusion from the alveolus to end capillary blood--unchanged. (3) Cardiac function (assessed by hemodynamics, echocardiography and electrocardiography)--normal--although maximum cardiac output and heart rate were reduced. (4) Oxygen extraction--maximal with PvO2 14.8 +/- 1 mmHg. With increasing altitude maximal blood and muscle lactate progressively declined although at any submaximal intensity blood and muscle lactate was higher at higher altitudes.
    Keywords: Aerospace Medicine
    Type: International journal of sports medicine (ISSN 0172-4622); Volume 13 Suppl 1; S13-8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...