ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Springer  (90)
  • Nature Publishing Group (NPG)  (27)
  • American Geophysical Union (AGU)
  • Helsinki
  • 2005-2009  (111)
  • 1935-1939  (8)
  • 2009  (111)
  • 1939  (8)
  • 1
    Call number: SR 90.0086(27)
    In: Veröffentlichungen des Finnischen Geodätischen Institutes = Suomen Geodeettisen Laitoksen Julkaisuja = Publications of the Finnish Geodetic Institute
    Type of Medium: Series available for loan
    Pages: 18 S.
    Series Statement: Veröffentlichungen des Finnischen Geodätischen Institutes 27
    Language: German
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Call number: SR 90.0086(28)
    In: Veröffentlichungen des Finnischen Geodätischen Institutes = Suomen Geodeettisen Laitoksen Julkaisuja = Publications of the Finnish Geodetic Institute
    Type of Medium: Series available for loan
    Pages: 18 S.
    Series Statement: Veröffentlichungen des Finnischen Geodätischen Institutes 28
    Language: German
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-07-18
    Print ISSN: 0169-3913
    Electronic ISSN: 1573-1634
    Topics: Geosciences , Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
  • 5
    Publication Date: 2009-03-25
    Print ISSN: 0923-4861
    Electronic ISSN: 1572-9834
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2009-01-21
    Print ISSN: 1420-682X
    Electronic ISSN: 1420-9071
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2009-05-09
    Description: Mechanochemical transduction enables an extraordinary range of physiological processes such as the sense of touch, hearing, balance, muscle contraction, and the growth and remodelling of tissue and bone. Although biology is replete with materials systems that actively and functionally respond to mechanical stimuli, the default mechanochemical reaction of bulk polymers to large external stress is the unselective scission of covalent bonds, resulting in damage or failure. An alternative to this degradation process is the rational molecular design of synthetic materials such that mechanical stress favourably alters material properties. A few mechanosensitive polymers with this property have been developed; but their active response is mediated through non-covalent processes, which may limit the extent to which properties can be modified and the long-term stability in structural materials. Previously, we have shown with dissolved polymer strands incorporating mechanically sensitive chemical groups-so-called mechanophores-that the directional nature of mechanical forces can selectively break and re-form covalent bonds. We now demonstrate that such force-induced covalent-bond activation can also be realized with mechanophore-linked elastomeric and glassy polymers, by using a mechanophore that changes colour as it undergoes a reversible electrocyclic ring-opening reaction under tensile stress and thus allows us to directly and locally visualize the mechanochemical reaction. We find that pronounced changes in colour and fluorescence emerge with the accumulation of plastic deformation, indicating that in these polymeric materials the transduction of mechanical force into the ring-opening reaction is an activated process. We anticipate that force activation of covalent bonds can serve as a general strategy for the development of new mechanophore building blocks that impart polymeric materials with desirable functionalities ranging from damage sensing to fully regenerative self-healing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Davis, Douglas A -- Hamilton, Andrew -- Yang, Jinglei -- Cremar, Lee D -- Van Gough, Dara -- Potisek, Stephanie L -- Ong, Mitchell T -- Braun, Paul V -- Martinez, Todd J -- White, Scott R -- Moore, Jeffrey S -- Sottos, Nancy R -- England -- Nature. 2009 May 7;459(7243):68-72. doi: 10.1038/nature07970.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of Illinois at Urbana-Champaign, Illinois 61801, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19424152" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-05-09
    Description: Chromatin modifications, especially histone-tail acetylation, have been implicated in memory formation. Increased histone-tail acetylation induced by inhibitors of histone deacetylases (HDACis) facilitates learning and memory in wild-type mice as well as in mouse models of neurodegeneration. Harnessing the therapeutic potential of HDACis requires knowledge of the specific HDAC family member(s) linked to cognitive enhancement. Here we show that neuron-specific overexpression of HDAC2, but not that of HDAC1, decreased dendritic spine density, synapse number, synaptic plasticity and memory formation. Conversely, Hdac2 deficiency resulted in increased synapse number and memory facilitation, similar to chronic treatment with HDACis in mice. Notably, reduced synapse number and learning impairment of HDAC2-overexpressing mice were ameliorated by chronic treatment with HDACis. Correspondingly, treatment with HDACis failed to further facilitate memory formation in Hdac2-deficient mice. Furthermore, analysis of promoter occupancy revealed an association of HDAC2 with the promoters of genes implicated in synaptic plasticity and memory formation. Taken together, our results suggest that HDAC2 functions in modulating synaptic plasticity and long-lasting changes of neural circuits, which in turn negatively regulates learning and memory. These observations encourage the development and testing of HDAC2-selective inhibitors for human diseases associated with memory impairment.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3498958/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3498958/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guan, Ji-Song -- Haggarty, Stephen J -- Giacometti, Emanuela -- Dannenberg, Jan-Hermen -- Joseph, Nadine -- Gao, Jun -- Nieland, Thomas J F -- Zhou, Ying -- Wang, Xinyu -- Mazitschek, Ralph -- Bradner, James E -- DePinho, Ronald A -- Jaenisch, Rudolf -- Tsai, Li-Huei -- R01 DA028301/DA/NIDA NIH HHS/ -- R01 DA028301-02/DA/NIDA NIH HHS/ -- R01 NS051874/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2009 May 7;459(7243):55-60. doi: 10.1038/nature07925.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19424149" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Butyrates/pharmacology ; Dendritic Spines/physiology ; Electrical Synapses/*physiology ; Female ; Gene Expression Regulation ; Hippocampus/metabolism ; Histone Deacetylase 1 ; Histone Deacetylase 2 ; Histone Deacetylase Inhibitors ; Histone Deacetylases/deficiency/genetics/*metabolism ; Hydroxamic Acids/pharmacology ; Learning/drug effects ; Male ; Memory/drug effects/*physiology ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Neurons/metabolism ; Promoter Regions, Genetic/genetics ; Repressor Proteins/antagonists & inhibitors/genetics/*metabolism ; Sodium/pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2009-10-23
    Description: The tumour stroma is believed to contribute to some of the most malignant characteristics of epithelial tumours. However, signalling between stromal and tumour cells is complex and remains poorly understood. Here we show that the genetic inactivation of Pten in stromal fibroblasts of mouse mammary glands accelerated the initiation, progression and malignant transformation of mammary epithelial tumours. This was associated with the massive remodelling of the extracellular matrix (ECM), innate immune cell infiltration and increased angiogenesis. Loss of Pten in stromal fibroblasts led to increased expression, phosphorylation (T72) and recruitment of Ets2 to target promoters known to be involved in these processes. Remarkably, Ets2 inactivation in Pten stroma-deleted tumours ameliorated disruption of the tumour microenvironment and was sufficient to decrease tumour growth and progression. Global gene expression profiling of mammary stromal cells identified a Pten-specific signature that was highly represented in the tumour stroma of patients with breast cancer. These findings identify the Pten-Ets2 axis as a critical stroma-specific signalling pathway that suppresses mammary epithelial tumours.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2767301/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2767301/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Trimboli, Anthony J -- Cantemir-Stone, Carmen Z -- Li, Fu -- Wallace, Julie A -- Merchant, Anand -- Creasap, Nicholas -- Thompson, John C -- Caserta, Enrico -- Wang, Hui -- Chong, Jean-Leon -- Naidu, Shan -- Wei, Guo -- Sharma, Sudarshana M -- Stephens, Julie A -- Fernandez, Soledad A -- Gurcan, Metin N -- Weinstein, Michael B -- Barsky, Sanford H -- Yee, Lisa -- Rosol, Thomas J -- Stromberg, Paul C -- Robinson, Michael L -- Pepin, Francois -- Hallett, Michael -- Park, Morag -- Ostrowski, Michael C -- Leone, Gustavo -- P01 CA097189/CA/NCI NIH HHS/ -- P01 CA097189-050002/CA/NCI NIH HHS/ -- P01CA097189/CA/NCI NIH HHS/ -- R01 CA053271/CA/NCI NIH HHS/ -- R01 CA085619/CA/NCI NIH HHS/ -- R01 CA085619-05/CA/NCI NIH HHS/ -- R01 CA121275/CA/NCI NIH HHS/ -- R01 CA121275-02/CA/NCI NIH HHS/ -- R01 HD047470/HD/NICHD NIH HHS/ -- R01 HD047470-05/HD/NICHD NIH HHS/ -- R01CA053271/CA/NCI NIH HHS/ -- R01CA85619/CA/NCI NIH HHS/ -- R01HD47470/HD/NICHD NIH HHS/ -- England -- Nature. 2009 Oct 22;461(7267):1084-91. doi: 10.1038/nature08486.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Genetics, College of Biological Sciences, The Ohio State University, Columbus, Ohio 43210, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19847259" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Breast Neoplasms/*metabolism/*pathology ; Cell Line, Tumor ; Cell Proliferation ; Cell Transformation, Neoplastic ; Extracellular Matrix/metabolism ; Fibroblasts/*metabolism ; Gene Deletion ; Gene Expression Regulation, Neoplastic ; Humans ; Immunity, Innate ; Mammary Neoplasms, Experimental/metabolism/pathology ; Mice ; Mice, Transgenic ; Neoplasms, Glandular and Epithelial/*metabolism/*pathology ; PTEN Phosphohydrolase/deficiency/genetics/*metabolism ; Proto-Oncogene Protein c-ets-2/deficiency/metabolism ; Stromal Cells/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2009-06-06
    Description: Barrier structures (for example, epithelia around tissues and plasma membranes around cells) are required for internal homeostasis and protection from pathogens. Wound detection and healing represent a dormant morphogenetic program that can be rapidly executed to restore barrier integrity and tissue homeostasis. In animals, initial steps include recruitment of leukocytes to the site of injury across distances of hundreds of micrometres within minutes of wounding. The spatial signals that direct this immediate tissue response are unknown. Owing to their fast diffusion and versatile biological activities, reactive oxygen species, including hydrogen peroxide (H(2)O(2)), are interesting candidates for wound-to-leukocyte signalling. Here we probe the role of H(2)O(2) during the early events of wound responses in zebrafish larvae expressing a genetically encoded H(2)O(2) sensor. This reporter revealed a sustained rise in H(2)O(2) concentration at the wound margin, starting approximately 3 min after wounding and peaking at approximately 20 min, which extended approximately 100-200 microm into the tail-fin epithelium as a decreasing concentration gradient. Using pharmacological and genetic inhibition, we show that this gradient is created by dual oxidase (Duox), and that it is required for rapid recruitment of leukocytes to the wound. This is the first observation, to our knowledge, of a tissue-scale H(2)O(2) pattern, and the first evidence that H(2)O(2) signals to leukocytes in tissues, in addition to its known antiseptic role.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2803098/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2803098/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Niethammer, Philipp -- Grabher, Clemens -- Look, A Thomas -- Mitchison, Timothy J -- GM023928/GM/NIGMS NIH HHS/ -- R01 GM023928/GM/NIGMS NIH HHS/ -- R01 GM023928-30/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Jun 18;459(7249):996-9. doi: 10.1038/nature08119. Epub 2009 Jun 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02114, USA. Philipp_Niethammer@hms.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19494811" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Diffusion ; Hydrogen Peroxide/*metabolism ; Larva/metabolism ; Leukocytes/cytology/physiology ; NADPH Oxidase/metabolism ; Wound Healing/physiology ; Wounds and Injuries/enzymology/*metabolism/pathology ; Zebrafish/genetics/*metabolism ; Zebrafish Proteins/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...