ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Antimicrobial activity  (1)
  • Asthma/immunology/metabolism/pathology/*physiopathology  (1)
  • 2015-2019
  • 2000-2004  (2)
  • 1960-1964
  • 1920-1924
  • 2000  (2)
  • 1924
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    JBIC 5 (2000), S. 139-155 
    ISSN: 1432-1327
    Keywords: Key words Zinc enzyme ; Enzyme model ; Macrocyclic zinc(II) complex ; Molecular recognition ; TATA box ; Antimicrobial activity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Intrinsic chemical properties of the zinc(II) ion in zinc enzymes have been investigated by the model of 1 :1 Zn2+-macrocyclic polyamine complexes, including Zn2+-1,5,9-triazacyclododecane ([12]aneN3) and 1,4,7,10-tetraazacyclododecane (cyclen). The physiologically most suitable pK a values for the Zn2+-bound H2O in enzymes were illustrated by the first model Zn2+-[12]aneN3 complex, which mimics the essential kinetic and thermodynamic roles of Zn2+ in carbonic anhydrase. The activation of proximate serine residues (in alkaline phosphatase) and activation of alcohols for hydride transfer to NAD+ (in alcohol dehydrogenase) were also mimicked by Zn2+-[12]aneN3 complexes. The functions of two zincs in dinuclear metallophosphatases were explained by a new dinuclear Zn2+-cryptate. For an aldolase type II model, a Zn2+-cyclen derivative showed facile enolate formation from a proximate carbonyl pendant under physiological conditions. The strong anion affinities, which Zn2+ intrinsically possesses, were exploited into novel selective nucleobase thymine (or uracil) recognition of Zn2+-cyclen complexes by the strong Zn2+-imido anion bond formation. The Zn2+-aromatic-pendant cyclen complexes selectively bind to T (or U) in single- and double-stranded DNA (or RNA). Thus, Zn2+ complexes act like molecular zippers to break A-T pairs in DNA, which was proven by various physicochemical measurements and DNA footprinting assays. These Zn2+ complexes showed some relevant biochemical and biological properties such as inhibition of transcriptional factor, TATA binding protein, or strong antimicrobial activities to Gram-positive bacterial strains.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2000-03-17
    Description: Allergic asthma is caused by the aberrant expansion in the lung of T helper cells that produce type 2 (TH2) cytokines and is characterized by infiltration of eosinophils and bronchial hyperreactivity. This disease is often triggered by mast cells activated by immunoglobulin E (IgE)-mediated allergic challenge. Activated mast cells release various chemical mediators, including prostaglandin D2 (PGD2), whose role in allergic asthma has now been investigated by the generation of mice deficient in the PGD receptor (DP). Sensitization and aerosol challenge of the homozygous mutant (DP-/-) mice with ovalbumin (OVA) induced increases in the serum concentration of IgE similar to those in wild-type mice subjected to this model of asthma. However, the concentrations of TH2 cytokines and the extent of lymphocyte accumulation in the lung of OVA-challenged DP-/- mice were greatly reduced compared with those in wild-type animals. Moreover, DP-/- mice showed only marginal infiltration of eosinophils and failed to develop airway hyperreactivity. Thus, PGD2 functions as a mast cell-derived mediator to trigger asthmatic responses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Matsuoka, T -- Hirata, M -- Tanaka, H -- Takahashi, Y -- Murata, T -- Kabashima, K -- Sugimoto, Y -- Kobayashi, T -- Ushikubi, F -- Aze, Y -- Eguchi, N -- Urade, Y -- Yoshida, N -- Kimura, K -- Mizoguchi, A -- Honda, Y -- Nagai, H -- Narumiya, S -- New York, N.Y. -- Science. 2000 Mar 17;287(5460):2013-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, Kyoto University Faculty of Medicine, Kyoto 606-8501, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10720327" target="_blank"〉PubMed〈/a〉
    Keywords: Allergens/immunology ; Animals ; Asthma/immunology/metabolism/pathology/*physiopathology ; Bronchial Hyperreactivity ; Bronchoalveolar Lavage Fluid/cytology/immunology ; Crosses, Genetic ; Female ; Gene Targeting ; Humans ; Immunoglobulin E/blood ; Interferon-gamma/metabolism ; Interleukins/metabolism ; Lung/immunology/metabolism/pathology ; Lymphocytes/immunology ; Male ; Mast Cells/metabolism ; Mice ; Mice, Inbred C57BL ; Mucus/secretion ; Ovalbumin/immunology ; Prostaglandin D2/metabolism/*physiology ; *Receptors, Immunologic ; Receptors, Prostaglandin/genetics/metabolism/*physiology ; Respiratory Mucosa/secretion
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...