ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society of Hematology  (5)
  • American Association for the Advancement of Science (AAAS)  (3)
  • 2015-2019
  • 2000-2004  (8)
  • 1960-1964
  • 1920-1924
  • 2000  (8)
  • 1924
  • 1
    Publication Date: 2000-03-17
    Description: Allergic asthma is caused by the aberrant expansion in the lung of T helper cells that produce type 2 (TH2) cytokines and is characterized by infiltration of eosinophils and bronchial hyperreactivity. This disease is often triggered by mast cells activated by immunoglobulin E (IgE)-mediated allergic challenge. Activated mast cells release various chemical mediators, including prostaglandin D2 (PGD2), whose role in allergic asthma has now been investigated by the generation of mice deficient in the PGD receptor (DP). Sensitization and aerosol challenge of the homozygous mutant (DP-/-) mice with ovalbumin (OVA) induced increases in the serum concentration of IgE similar to those in wild-type mice subjected to this model of asthma. However, the concentrations of TH2 cytokines and the extent of lymphocyte accumulation in the lung of OVA-challenged DP-/- mice were greatly reduced compared with those in wild-type animals. Moreover, DP-/- mice showed only marginal infiltration of eosinophils and failed to develop airway hyperreactivity. Thus, PGD2 functions as a mast cell-derived mediator to trigger asthmatic responses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Matsuoka, T -- Hirata, M -- Tanaka, H -- Takahashi, Y -- Murata, T -- Kabashima, K -- Sugimoto, Y -- Kobayashi, T -- Ushikubi, F -- Aze, Y -- Eguchi, N -- Urade, Y -- Yoshida, N -- Kimura, K -- Mizoguchi, A -- Honda, Y -- Nagai, H -- Narumiya, S -- New York, N.Y. -- Science. 2000 Mar 17;287(5460):2013-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, Kyoto University Faculty of Medicine, Kyoto 606-8501, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10720327" target="_blank"〉PubMed〈/a〉
    Keywords: Allergens/immunology ; Animals ; Asthma/immunology/metabolism/pathology/*physiopathology ; Bronchial Hyperreactivity ; Bronchoalveolar Lavage Fluid/cytology/immunology ; Crosses, Genetic ; Female ; Gene Targeting ; Humans ; Immunoglobulin E/blood ; Interferon-gamma/metabolism ; Interleukins/metabolism ; Lung/immunology/metabolism/pathology ; Lymphocytes/immunology ; Male ; Mast Cells/metabolism ; Mice ; Mice, Inbred C57BL ; Mucus/secretion ; Ovalbumin/immunology ; Prostaglandin D2/metabolism/*physiology ; *Receptors, Immunologic ; Receptors, Prostaglandin/genetics/metabolism/*physiology ; Respiratory Mucosa/secretion
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2000-10-06
    Description: An insulinlike signaling pathway controls Caenorhabditis elegans aging, metabolism, and development. Mutations in the daf-2 insulin receptor-like gene or the downstream age-1 phosphoinositide 3-kinase gene extend adult life-span by two- to threefold. To identify tissues where this pathway regulates aging and metabolism, we restored daf-2 pathway signaling to only neurons, muscle, or intestine. Insulinlike signaling in neurons alone was sufficient to specify wild-type life-span, but muscle or intestinal signaling was not. However, restoring daf-2 pathway signaling to muscle rescued metabolic defects, thus decoupling regulation of life-span and metabolism. These findings point to the nervous system as a central regulator of animal longevity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wolkow, C A -- Kimura, K D -- Lee, M S -- Ruvkun, G -- AG14161/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2000 Oct 6;290(5489):147-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Massachusetts General Hospital and Department of Genetics, Harvard Medical School, Boston, MA 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11021802" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/genetics/*physiology ; Animals ; Caenorhabditis elegans/genetics/*physiology ; *Caenorhabditis elegans Proteins ; Catalase/genetics/metabolism ; Gene Expression Regulation ; Genes, Helminth ; Helminth Proteins/genetics/metabolism ; Intestines/cytology/physiology ; Larva/physiology ; Longevity ; Muscles/cytology/physiology ; Nervous System Physiological Phenomena ; Neurons/*physiology ; Phenotype ; *Phosphatidylinositol 3-Kinases ; Promoter Regions, Genetic ; Receptor, Insulin/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction ; Superoxide Dismutase/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2000-08-05
    Description: Ferromagnetic (FM) spin fluctuations are believed to mediate the spin-triplet pairing for the p-wave superconductivity in Sr(2)RuO(4). Our experiments show that, at the surface, a bulk soft-phonon mode freezes into a static lattice distortion associated with an in-plane rotation of the RuO(6) octahedron. First-principle calculations confirm this structure and predict a FM ground state at the surface. This coupling between structure and magnetism in the environment of broken symmetry at the surface allows a reconsideration of the coupling mechanism in the bulk.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Matzdorf -- Fang -- Ismail -- Zhang -- Kimura -- Tokura -- Terakura -- Plummer -- New York, N.Y. -- Science. 2000 Aug 4;289(5480):746-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics and Astronomy, The University of Tennessee, Knoxville, TN 37996-1200, and Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831-6057, USA. Department of Physics, Florida International University, Miami, FL 33199, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10926529" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2000-04-01
    Description: Antigen (Ag) immunization induces formation of the germinal center (GC), with large, rapidly proliferating centroblasts in the dark zone, and small, nondividing centrocytes in the light zone. We identified a novel nuclear protein, GANP, that is up-regulated in centrocytes. We found that GANP was up-regulated in GC B cells of Peyer's patches in normal mice and in spleens from Ag-immunized mice. GANP-positive cells appeared in the light zone of the GC, with coexpression of the peanut agglutinin (PNA) (PNA)-positive B220-positive phenotype. The expression of GANP was strikingly correlated with GC formation because Bcl6-deficient mice did not show the up-regulation of GANP. GANP-positive cells were mostly surrounded by follicular dendritic cells. Stimulation with anti-μ and anti-CD40 induced up-regulation of ganp messenger RNA as well as GANP protein in B220-positive B cells in vitro. GANP is a 210-kd protein localized in both the cytoplasm and nuclei, with a homologous region to Map80 that is associated with MCM3, a protein essential for DNA replication. Remarkably, GANP is associated with MCM3 in B cells and MCM3 is also up-regulated in the GC area. These results suggest that the up-regulation of GANP might participate in the development of Ag-driven B cells in GCs through its interaction with MCM3.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2000-04-01
    Description: Antigen (Ag) immunization induces formation of the germinal center (GC), with large, rapidly proliferating centroblasts in the dark zone, and small, nondividing centrocytes in the light zone. We identified a novel nuclear protein, GANP, that is up-regulated in centrocytes. We found that GANP was up-regulated in GC B cells of Peyer's patches in normal mice and in spleens from Ag-immunized mice. GANP-positive cells appeared in the light zone of the GC, with coexpression of the peanut agglutinin (PNA) (PNA)-positive B220-positive phenotype. The expression of GANP was strikingly correlated with GC formation because Bcl6-deficient mice did not show the up-regulation of GANP. GANP-positive cells were mostly surrounded by follicular dendritic cells. Stimulation with anti-μ and anti-CD40 induced up-regulation of ganp messenger RNA as well as GANP protein in B220-positive B cells in vitro. GANP is a 210-kd protein localized in both the cytoplasm and nuclei, with a homologous region to Map80 that is associated with MCM3, a protein essential for DNA replication. Remarkably, GANP is associated with MCM3 in B cells and MCM3 is also up-regulated in the GC area. These results suggest that the up-regulation of GANP might participate in the development of Ag-driven B cells in GCs through its interaction with MCM3.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2000-01-01
    Description: Nitric oxide (NO) regulates production of vascular endothelial growth factor (VEGF) by normal and transformed cells. We demonstrate that NO donors may up-regulate the activity of the human VEGF promoter in normoxic human glioblastoma and hepatoma cells independent of a cyclic guanosine monophosphate–mediated pathway. Deletion and mutation analysis of the VEGF promoter indicates that the NO-responsive cis-elements are the hypoxia-inducible factor-1 (HIF-1) binding site and an adjacent ancillary sequence that is located immediately downstream within the hypoxia-response element (HRE). This work demonstrates that the HRE of this promoter is the primary target of NO. In addition, VEGF gene regulation by NO, as well as by hypoxia, is potentiated by the AP-1 element of the gene. Our study also reveals that NO and hypoxia induce an increase in HIF-1 binding activity and HIF-1 protein levels, both in the nucleus and the whole cell. These results suggest that there are common features of the NO and hypoxic pathways of VEGF induction, while in part, NO mediates gene transcription by a mechanism distinct from hypoxia. This is demonstrated by a difference in sensitivity to guanylate cyclase inhibitors and a different pattern of HIF-1 binding. These results show that there is a primary role for NO in the control of VEGF synthesis and in cell adaptations to hypoxia. (Blood. 2000;95:189-197)
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2000-01-01
    Description: Nitric oxide (NO) regulates production of vascular endothelial growth factor (VEGF) by normal and transformed cells. We demonstrate that NO donors may up-regulate the activity of the human VEGF promoter in normoxic human glioblastoma and hepatoma cells independent of a cyclic guanosine monophosphate–mediated pathway. Deletion and mutation analysis of the VEGF promoter indicates that the NO-responsive cis-elements are the hypoxia-inducible factor-1 (HIF-1) binding site and an adjacent ancillary sequence that is located immediately downstream within the hypoxia-response element (HRE). This work demonstrates that the HRE of this promoter is the primary target of NO. In addition, VEGF gene regulation by NO, as well as by hypoxia, is potentiated by the AP-1 element of the gene. Our study also reveals that NO and hypoxia induce an increase in HIF-1 binding activity and HIF-1 protein levels, both in the nucleus and the whole cell. These results suggest that there are common features of the NO and hypoxic pathways of VEGF induction, while in part, NO mediates gene transcription by a mechanism distinct from hypoxia. This is demonstrated by a difference in sensitivity to guanylate cyclase inhibitors and a different pattern of HIF-1 binding. These results show that there is a primary role for NO in the control of VEGF synthesis and in cell adaptations to hypoxia. (Blood. 2000;95:189-197)
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2000-02-15
    Description: Two anhaptoglobinemic patients showing anaphylactic transfusion reactions by antihaptoglobin antibody were found. Southern blot analysis indicated that 2 patients were homozygous for the deleted allele of the haptoglobin gene (Hpdel) as reported previously. We have identified the junction region of the deletion from genomic DNA of 1 patient using cassette-mediated polymerase chain reaction (PCR). Then, the deleted region from the 5′ breakpoint to the promoter region of the Hpwas amplified from genomic DNA of a control individual using PCR. DNA sequence analysis of these regions indicated that the 5′ breakpoint of the Hpdel allele was located 5.2 kilobase (kb) upstream of exon 1 of the Hp and the 3′ breakpoint was positioned between 52 and 53 base pair (bp) upstream of exon 5 of the haptoglobin-related gene. There was no significant homology between the DNA sequences flanking the 5′ and 3′ breakpoints, except for a 2-bp (TG) identity. To examine the gene frequency, we have developed a simple PCR method to detect the gene deletion. We found 8, 16, and 17 Hpdelalleles in 157 Koreans, 523 Japanese, and in 284 Chinese, respectively, but did not find the Hpdel in 101 Africans or in 100 European-Africans. The incidence of individuals homozygous for the Hpdel allele was therefore expected to be 1/4000 in Japanese, 1/1500 in Koreans, and 1/1000 in Chinese. This incidence is higher than that of IgA deficiency in Japanese. More attention should be paid on haptoglobin deficiency and antihaptoglobin antibody as the cause of transfusion-related anaphylactic reactions in Asian populations.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...