ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-09-21
    Description: Aims Boreal forest is the largest and contains the most soil carbon among global terrestrial biomes. Soil respiration during the prolonged winter period may play an important role in the carbon cycles in boreal forests. This study aims to explore the characteristics of winter soil respiration in the boreal forest and to show how it is regulated by environmental factors, such as soil temperature, soil moisture and snowpack. Methods Soil respiration in an old-growth larch forest ( Larix gmelinii Ruppr.) in Northeast China was intensively measured during the winter soil-freezing process in 2011 using an automated soil CO 2 flux system. The effects of soil temperature, soil moisture and thin snowpack on soil respiration and its temperature sensitivity were investigated. Important Findings Total soil respiration and heterotrophic respiration both showed a declining trend during the observation period, and no significant difference was found between soil respiration and heterotrophic respiration until the snowpack exceeded 20cm. Soil respiration was exponentially correlated with soil temperature and its temperature sensitivity (Q 10 value) for the entire measurement duration was 10.5. Snow depth and soil moisture both showed positive effects on the temperature sensitivity of soil respiration. Based on the change in the Q 10 value, we proposed a ‘freeze–thaw critical point’ hypothesis, which states that the Q 10 value above freeze–thaw critical point is much higher than that below it (16.0 vs . 3.5), and this was probably regulated by the abrupt change in soil water availability during the soil-freezing process. Our findings suggest interactive effects of multiple environmental factors on winter soil respiration and recommend adopting the freeze–thaw critical point to model soil respiration in a changing winter climate.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-09-21
    Description: Anthropogenic nitrogen (N) emissions to atmosphere have increased dramatically in China since 1980s, and this increase has aroused great concerns on its ecological impacts on terrestrial ecosystems. Previous studies have showed that terrestrial ecosystems in China are acting as a large carbon (C) sink, but its potential in the future remains largely uncertain. So far little work on the impacts of the N deposition on C sequestration in China’s terrestrial ecosystems has been assessed at a national scale. Aiming to assess and predict how ecological processes especially the C cycling respond to the increasing N deposition in China’s forests, recently researchers from Peking University and their partners have established a manipulation experimental network on the ecological effects of the N deposition: Nutrient Enrichment Experiments in China’s Forests Project (NEECF). The NEECF comprises 10 experiments at 7 sites located from north to south China, covering major zonal forest vegetation in eastern China from boreal forest in Greater Khingan Mountains to tropical forests in Hainan Island. This paper introduces the framework of the NEECF project and its potential policy implications.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-01-29
    Description: Aims Boreal larch ( Larix gmelinii ) forests in Northeast China have been widely disturbed since the 1987 conflagration; however, its long-term effects on the forest carbon (C) cycling have not been explored. The objective of this study thus was to quantify the effects of fire severity and post-fire reforestation on C pools and the changes of these forests. Methods Sixteen permanent plots have been set in two types of larch stands ( L. gmelinii -grass, LG; and L. gmelinii-Rhododendron dahurica, LR) with three levels of fire severity (unburned, low-severity and high-severity but replanted), at 1987 burned sites in Daxing’anling, northeastern China, to repeatedly measure ecosystem C pools in 1998 and 2014. C components were partitioned into vegetation (foliage, branch, stem and roots), soil and detritus (standing and fallen woody debris and litter). The fire effects on post-fire C dynamics were examined by comparing the differences of C pools and changes between the two field investigations caused by fire severity. Important Findings During the study period, unburned mature stands were C sinks (105g C m –2 year –1 for LG, and 190g C m –2 year –1 for LR), whereas the low-severity stands were C-neutral (–4 and 15g C m –2 year –1 for LG and LR, respectively). The high-severity burned but reforested stands were C sinks, among which, however, magnitudes (88 and 16g C m –2 year –1 for LG and LR, respectively) were smaller than those of the two unburned stands. Detritus C pools decreased significantly (with a loss ranging from 26 to 38g C m –2 year –1 ) in the burned stands during recent restoration. Soil organic C pools increased slightly in the unmanaged stands (unburned and low-severity, with accumulation rates ranging from 4 to 35g C m –2 year –1 ), but decreased for the high-severity replanted stands (loss rates of 28 and 36g C m –2 year –1 for LG and LR, respectively). These results indicate that fire severity has a dynamic post-fire effect on both C pools and distributions of the boreal larch forests, and that effective reforestation practice accelerates forest C sequestration.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-06-06
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-06-07
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...