ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
Years
  • 1
    Publication Date: 2022-07-14
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-06-07
    Description: The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Rabe, B., Heuze, C., Regnery, J., Aksenov, Y., Allerholt, J., Athanase, M., Bai, Y., Basque, C., Bauch, D., Baumann, T. M., Chen, D., Cole, S. T., Craw, L., Davies, A., Damm, E., Dethloff, K., Divine, D., Doglioni, F., Ebert, F., Fang, Y-C., Fer, I., Fong, A. A., Gradinger, R., Granskog, M. A., Graupner, R., Haas, C., He, H., He, Y., Hoppmann, M., Janout, M., Kadko, D., Kanzow, T., Karam, S., Kawaguchi, Y., Koenig, Z., Kong, B., Krishfield, R. A., Krumpen, T., Kuhlmey, D., Kuznetsov, I., Lan, M., Laukert, G., Lei, R., Li, T., Torres-Valdés, S., Lin, L,. Lin, L., Liu, H., Liu, N., Loose, B., Ma, X., MacKay, R., Mallet, M., Mallett, R. D. C., Maslowski, W., Mertens, C., Mohrholz, V., Muilwijk, M., Nicolaus, M., O’Brien, J. K., Perovich, D., Ren, J., Rex, M., Ribeiro, N., Rinke, A., Schaffer, J., Schuffenhauer, I., Schulz, K., Shupe, M. D., Shaw, W., Sokolov, V., Sommerfeld, A., Spreen, G., Stanton, T., Stephens, M., Su, J., Sukhikh, N., Sundfjord, A., Thomisch, K., Tippenhauer, S., Toole, J. M., Vredenborg, M., Walter, M., Wang, H., Wang, L., Wang, Y., Wendisch, M., Zhao, J., Zhou, M., & Zhu, J. Overview of the MOSAiC expedition: physical oceanography. Elementa: Science of the Anthropocene, 10(1), (2022): 1, https://doi.org/10.1525/elementa.2021.00062.
    Description: Arctic Ocean properties and processes are highly relevant to the regional and global coupled climate system, yet still scarcely observed, especially in winter. Team OCEAN conducted a full year of physical oceanography observations as part of the Multidisciplinary drifting Observatory for the Study of the Arctic Climate (MOSAiC), a drift with the Arctic sea ice from October 2019 to September 2020. An international team designed and implemented the program to characterize the Arctic Ocean system in unprecedented detail, from the seafloor to the air-sea ice-ocean interface, from sub-mesoscales to pan-Arctic. The oceanographic measurements were coordinated with the other teams to explore the ocean physics and linkages to the climate and ecosystem. This paper introduces the major components of the physical oceanography program and complements the other team overviews of the MOSAiC observational program. Team OCEAN’s sampling strategy was designed around hydrographic ship-, ice- and autonomous platform-based measurements to improve the understanding of regional circulation and mixing processes. Measurements were carried out both routinely, with a regular schedule, and in response to storms or opening leads. Here we present along-drift time series of hydrographic properties, allowing insights into the seasonal and regional evolution of the water column from winter in the Laptev Sea to early summer in Fram Strait: freshening of the surface, deepening of the mixed layer, increase in temperature and salinity of the Atlantic Water. We also highlight the presence of Canada Basin deep water intrusions and a surface meltwater layer in leads. MOSAiC most likely was the most comprehensive program ever conducted over the ice-covered Arctic Ocean. While data analysis and interpretation are ongoing, the acquired datasets will support a wide range of physical oceanography and multi-disciplinary research. They will provide a significant foundation for assessing and advancing modeling capabilities in the Arctic Ocean.
    Description: The following projects and funding agencies contributed to this work: Why is the deep Arctic Ocean Warming is funded by the Swedish Research Council, project number 2018-03859, and berth fees for this project were covered by the Swedish Polar Research Secretariat; The Changing Arctic Ocean (CAO) program, jointly funded by the United Kingdom Research and Innovation (UKRI) Natural Environment Research Council (NERC) and the Bundesministerium für Bildung und Forschung (BMBF), in particular, the CAO projects Advective Pathways of nutrients and key Ecological substances in the ARctic (APEAR) grants NE/R012865/1, NE/R012865/2, and #03V01461, and the project Primary productivity driven by Escalating Arctic NUTrient fluxeS grant #03F0804A; The Research Council of Norway (AROMA, grant no 294396; HAVOC, grant no 280292; and CAATEX, grant no 280531); Collaborative Research: Thermodynamics and Dynamic Drivers of the Arctic Sea Ice Mass Budget at Multidisciplinary drifting Observatory for the Study of the Arctic Climate; National Science Foundation (NSF) projects 1723400, Stanton; OPP-1724551, Shupe; The Helmholtz society strategic investment Frontiers in Arctic Marine monitoring (FRAM); Deutsche Forschungsgemeinschaft (German Research Foundation) through the Transregional Collaborative Research Centre TRR 172 “ArctiC Amplification: Climate Relevant Atmospheric and SurfaCe Processes, and Feedback Mechanisms (AC)3” (grant 268020496); The Japan Society for the Promotion of Science (grant numbers JP18H03745, JP18KK0292, and JP17KK0083) and the COLE grant of U. Tokyo; National Key Research and Development Plan Sub-Project of Ministry of Science and Technology of China (2016YFA0601804), “Simulation, Prediction and Regional Climate Response of Global Warming Hiatus”, 2016/07-2021/06; National Science Foundation grant number OPP-1756100 which funded two of the Ice-Tethered Profilers and all the Ice-Tethered Profiler deployments; Chinese Polar Environmental Comprehensive Investigation and Assessment Programs, funded by the Chinese Arctic and Antarctic Administration; Marine Science and Technology Fund of Shandong Province for Qingdao National Laboratory for Marine Science and Technology (Grant: 2018SDKJ0104-1) and Chinese Natural Science Foundation (Grant: 41941012); UK NERC Long-term Science Multiple Centre National Capability Programme “North Atlantic Climate System Integrated Study (ACSIS)”, grant NE/N018044/1; The London NERC Doctoral Training Partnership grant (NE/L002485/1) which funded RDCM; NSF grant number OPP-1753423, which funded the 7Be tracer –measurements; and The Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) through its projects: AWI_OCEAN, AWI_ROV, AWI_ICE, AWI_SNOW, AWI_ECO, AWI_ATMO, and AWI_BGC.
    Keywords: Physical oceanography ; MOSAiC ; Arctic ; Coupled ; Drift ; Sea ice
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-04-23
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-06-12
    Description: This data set contains the hydrographic profile data collected with the ship based CTD rosette during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC). The CTD is an SBE911plus with 24 bottles, 12 liters each, operated with a winch and crane on the side of Polarstern. The data set contains calibrated and quality-controlled parameters (temperature, conductivity, oxygen and their derived variables) as well as only pre-cruise calibrated parameters where no post-cruise calibration or quality control was applied (all other). CDOM fluorescence data are the exception. Quality control was performed but data have to be handled with care, as the sensor seems to have broken down during leg 3 such that no post-cruise calibration could be applied. The data are provided as text file (all cruise legs in one file) as well as in netCDF format (one file per cruise leg). The accuracy for salinity and conductivity is 0.004 while the accuracy for temperature is 0.002. Additional information on the sensor used for the final data set, the water depth as well as the availability of profile or bottle data is given in a separate info-text-file. Contact: Sandra.Tippenhauer@awi.de. Quality flags are given based on paragraph 6. "Quality flags" from https://www.seadatanet.org/content/download/596/file/SeaDataNet_QC_procedures_V2_%28May_2010%29.pdf. QC flag meanings: 0 = unknown, 1 = good_data, 2 = probably good_data, 3 = probably bad data, 4 = bad data set to nan. This work was carried out and data was produced as part of the international Multidisciplinary drifting Observatory for the Study of the Arctic Climate (MOSAiC) with the tag MOSAiC20192020. We thank all persons involved in the expedition of the Research Vessel Polarstern during MOSAiC in 2019-2020 (AWI_PS122_00) as listed in Nixdorf et al. (2021).
    Keywords: Advective Pathways of nutrients and key Ecological substances in the ARctic; APEAR; Arctic Ocean; Attenuation, optical beam transmission; AWI_PhyOce; Chlorophyll a; Conductivity; CTD; CTD, Sea-Bird, SBE 911plus; CTD, Sea-Bird, SBE 911plus, measured with Temperature sensor, Sea-Bird, SBE3plus; CTD, Sea-Bird, SBE 911plus; Calculation according to Bittig et al. (2018); CTD, Sea-Bird, SBE 911plus; Calculation according to McDougall and Barker (2011); CTD, Sea-Bird, SBE 911plus; measured with Conductivity sensor, Sea-Bird, SBE 4; CTD, Sea-Bird, SBE 911plus; measured with Dissolved oxygen sensor, Sea-Bird, SBE 43; CTD, Sea-Bird, SBE 911plus; measured with Fluorometer, Turner Designs, Cyclops-6k 2160-000-R; CTD, Sea-Bird, SBE 911plus; measured with Fluorometer, WET Labs, ECO FLRTD; CTD, Sea-Bird, SBE 911plus; measured with PAR sensor, Biospherical Instruments Inc., QCP2300-HP; CTD, Sea-Bird, SBE 911plus; measured with SPAR Sensor, Biospherical Instruments Inc., QCR2200; CTD, Sea-Bird, SBE 911plus; measured with Transmissometer, WET Labs, C-Star; CTD/Rosette; CTD-RO; DATE/TIME; Density, potential anomaly; DEPTH, water; Event label; Fluorescence, colored dissolved organic matter; HAVOC; LATITUDE; LONGITUDE; MOSAiC; MOSAIC_PO; MOSAiC20192020; MOSAiC expedition; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Oxygen; Oxygen, dissolved; Oxygen saturation; Physical Oceanography @ AWI; Polarstern; Pressure, water; PS122/1; PS122/1_10-41; PS122/1_10-44; PS122/1_10-60; PS122/1_10-64; PS122/1_2-68; PS122/1_6-58; PS122/1_6-79; PS122/1_6-81; PS122/1_7-47; PS122/1_7-49; PS122/1_7-80; PS122/1_8-43; PS122/1_8-46; PS122/1_8-71; PS122/1_8-98; PS122/1_9-50; PS122/1_9-61; PS122/1_9-67; PS122/1_9-87; PS122/2; PS122/2_16-21; PS122/2_16-34; PS122/2_17-39; PS122/2_17-41; PS122/2_17-64; PS122/2_17-68; PS122/2_18-32; PS122/2_18-34; PS122/2_18-57; PS122/2_18-74; PS122/2_19-55; PS122/2_19-56; PS122/2_19-76; PS122/2_19-77; PS122/2_20-45; PS122/2_20-46; PS122/2_20-71; PS122/2_20-73; PS122/2_21-64; PS122/2_21-65; PS122/2_22-42; PS122/2_22-47; PS122/2_22-63; PS122/2_23-46; PS122/2_23-47; PS122/2_23-63; PS122/2_24-2; PS122/2_24-4; PS122/2_25-52; PS122/2_25-54; PS122/2_25-71; PS122/2_25-73; PS122/3; PS122/3_30-53; PS122/3_30-64; PS122/3_31-39; PS122/3_31-59; PS122/3_31-63; PS122/3_40-36; PS122/3_42-32; PS122/4; PS122/4_44-183; PS122/4_44-184; PS122/4_44-187; PS122/4_44-202; PS122/4_44-67; PS122/4_44-76; PS122/4_45-100; PS122/4_45-101; PS122/4_45-106; PS122/4_45-121; PS122/4_45-3; PS122/4_45-31; PS122/4_45-48; PS122/4_45-53; PS122/4_45-72; PS122/4_45-73; PS122/4_45-74; PS122/4_45-75; PS122/4_45-76; PS122/4_45-77; PS122/4_45-78; PS122/4_45-79; PS122/4_45-80; PS122/4_45-81; PS122/4_45-82; PS122/4_45-83; PS122/4_45-84; PS122/4_45-85; PS122/4_45-88; PS122/4_45-9; PS122/4_45-94; PS122/4_45-95; PS122/4_45-96; PS122/4_45-97; PS122/4_45-98; PS122/4_45-99; PS122/4_46-15; PS122/4_46-2; PS122/4_46-35; PS122/4_46-56; PS122/4_46-60; PS122/4_46-83; PS122/4_46-87; PS122/4_46-91; PS122/4_47-108; PS122/4_47-52; PS122/4_47-60; PS122/4_48-121; PS122/4_48-15; PS122/4_48-155; PS122/4_48-159; PS122/4_48-29; PS122/4_48-56; PS122/4_48-60; PS122/4_48-62; PS122/4_48-96; PS122/4_49-10; PS122/4_49-14; PS122/4_49-2; PS122/4_49-25; PS122/4_49-36; PS122/4_49-5; PS122/4_50-21; PS122/4_50-52; PS122/5; PS122/5_59-138; PS122/5_59-149; PS122/5_59-272; PS122/5_59-274; PS122/5_59-305; PS122/5_59-306; PS122/5_59-357; PS122/5_59-363; PS122/5_59-62; PS122/5_59-72; PS122/5_60-67; PS122/5_60-69; PS122/5_60-89; PS122/5_61-128; PS122/5_61-159; PS122/5_61-161; PS122/5_61-189; PS122/5_61-211; PS122/5_62-38; PS122/5_62-4; PS122/5_62-66; PS122/5_62-88; PS122/5_62-91; PS122/5_63-100; PS122/5_63-110; PS122/5_63-111; PS122/5_63-35; PS122/5_63-53; Quality flag, attenuation; Quality flag, chlorophyll; Quality flag, conductivity; Quality flag, conservative water temperature; Quality flag, density; Quality flag, fluorescence, colored dissolved organic matter; Quality flag, irradiance; Quality flag, oxygen; Quality flag, rhodamine; Quality flag, salinity; Quality flag, surface irradiance; Quality flag, water temperature; Radiation, photosynthetically active; Radiation, photosynthetically active, surface; Rhodamine; Ridges - Safe HAVens for ice-associated Flora and Fauna in a Seasonally ice-covered Arctic OCean; Salinity; Salinity, absolute; Seadatanet flag: Data quality control procedures according to SeaDataNet (2010); Temperature, water; Temperature, water, conservative; Temperature, water, potential; WAOW; Why is the deep Arctic Ocean Warming?
    Type: Dataset
    Format: text/tab-separated-values, 6733924 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-06-12
    Description: Temperature rising around the thermistors after a weak heating applied to each sensor daily after 30 s.
    Keywords: 2019T62; 2019T62, PRIC_09_01; Arctic Ocean; Coring site; DATE/TIME; Heating rise; INTAROS; Integrated Arctic observation system; LATITUDE; LONGITUDE; MOSAiC; MOSAiC_ICE; MOSAiC20192020; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/1; PS122/1_1-125; PS122/4; PS122/4_43-156; Quality flag, position; SAMS Ice Mass Balance buoy; Sea ice mass balance; SIMBA; Temperature; Temperature, difference
    Type: Dataset
    Format: text/tab-separated-values, 63173 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-06-12
    Description: Geographic position, barometric pressure, tilt and compass.
    Keywords: 2019T62; 2019T62, PRIC_09_01; Arctic Ocean; Compass bearing; Coring site; DATE/TIME; Heating rise; INTAROS; Integrated Arctic observation system; LATITUDE; LONGITUDE; MOSAiC; MOSAiC_ICE; MOSAiC20192020; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; Pressure, atmospheric; PS122/1; PS122/1_1-125; PS122/4; PS122/4_43-156; Quality flag, position; SAMS Ice Mass Balance buoy; Sea ice mass balance; SIMBA; Temperature; Temperature, air; Tilt angle
    Type: Dataset
    Format: text/tab-separated-values, 66595 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-06-12
    Description: Temperature profile from atmosphere through snow and ice into the ocean.
    Keywords: 2019T62; 2019T62, PRIC_09_01; Arctic Ocean; Coring site; DATE/TIME; Heating rise; INTAROS; Integrated Arctic observation system; LATITUDE; LONGITUDE; MOSAiC; MOSAiC_ICE; MOSAiC20192020; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/1; PS122/1_1-125; PS122/4; PS122/4_43-156; Quality flag, position; SAMS Ice Mass Balance buoy; Sea ice mass balance; SIMBA; Temperature; Temperature, technical
    Type: Dataset
    Format: text/tab-separated-values, 252936 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-06-12
    Description: Temperature rising around the thermistors after a weak heating applied to each sensor daily after 120 s.
    Keywords: 2019T62; 2019T62, PRIC_09_01; Arctic Ocean; Coring site; DATE/TIME; Heating rise; INTAROS; Integrated Arctic observation system; LATITUDE; LONGITUDE; MOSAiC; MOSAiC_ICE; MOSAiC20192020; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/1; PS122/1_1-125; PS122/4; PS122/4_43-156; Quality flag, position; SAMS Ice Mass Balance buoy; Sea ice mass balance; SIMBA; Temperature; Temperature, difference
    Type: Dataset
    Format: text/tab-separated-values, 63173 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-06-12
    Description: Temperature rising around the thermistors after a weak heating applied to each sensor daily after 30 s.
    Keywords: 2019T70; AF-MOSAiC-1; AF-MOSAiC-1_99; Akademik Fedorov; Arctic Ocean; DATE/TIME; distributed deformation; Heating rising; INTAROS; Integrated Arctic observation system; LATITUDE; LONGITUDE; MOSAiC; MOSAiC20192020; MOSAiC20192020, AF122/1; MOSAiC-ICE; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/1_1-173, 2019T70, FMI_06_03; PS122/4; PS122/4_43-174; Quality flag, position; SAMS Ice Mass Balance buoy; Sea ice mass balance; SIMBA; snow; Temperature; Temperature, difference
    Type: Dataset
    Format: text/tab-separated-values, 72600 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-06-12
    Description: Temperature and heating-induced temperature differences were measured along a chain of thermistors. SIMBA 2019T56 (a.k.a. FMI_05_06, IRIDIUM number 300234065176750) is an autonomous instrument that was installed on drifting sea ice in the Arctic Ocean during the 1st leg of the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) in November 2019. The buoy was deployed at the ~2 km from the ship at the SW direction with initial thicknesses of snow and ice of 0.18 and 0.42 m, respectively, on 2 November 2019. The thermistor chain was 5 m long and included 241 sensors with a regular spacing of 2cm. The depths for the sensors are 80 to -398 cm, referring to the initial interface between snow and ice. The last sensor was used to measure the air temperature at 1 m above the initial snow surface. The resulting time series describes the evolution of temperature and temperature differences after two heating cycles of 30 and 120 s as a function of depth and time between 2 November 2019 and 2 July 2020 in sample intervals of 6 hours for temperature and 24 hours for temperature differences. In addition to temperature, geographic position, barometric pressure, tilt and compass were measured.
    Keywords: 2019T56, FMI_05_06; Arctic Ocean; Heating rise; INTAROS; Integrated Arctic observation system; MOSAiC; MOSAiC20192020; MOSAiC-ICE; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; PS122/1; PS122/1_1-272; SAMS Ice Mass Balance buoy; Sea ice mass balance; SIMBA; Temperature
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...