ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • Copernicus  (2)
  • Public Library of Science
  • Atmospheric Chemistry and Physics. 2013; 13(15): 7567-7585. Published 2013 Aug 06. doi: 10.5194/acp-13-7567-2013.  (1)
  • Climate of the Past Discussions. 2013; 9(5): 6035-6076. Published 2013 Oct 29. doi: 10.5194/cpd-9-6035-2013.  (1)
  • 19026
  • 57698
Collection
  • Articles  (2)
Publisher
  • Copernicus  (2)
  • Public Library of Science
Years
Journal
Topic
  • 1
    Publication Date: 2013-08-06
    Description: We present the first reconstruction of the Northern Hemisphere (NH) high latitude atmospheric carbon monoxide (CO) mole fraction from Greenland firn air. Firn air samples were collected at three deep ice core sites in Greenland (NGRIP in 2001, Summit in 2006 and NEEM in 2008). CO records from the three sites agree well with each other as well as with recent atmospheric measurements, indicating that CO is well preserved in the firn at these sites. CO atmospheric history was reconstructed back to the year 1950 from the measurements using a combination of two forward models of gas transport in firn and an inverse model. The reconstructed history suggests that Arctic CO in 1950 was 140–150 nmol mol−1, which is higher than today's values. CO mole fractions rose by 10–15 nmol mol−1 from 1950 to the 1970s and peaked in the 1970s or early 1980s, followed by a ≈ 30 nmol mol−1 decline to today's levels. We compare the CO history with the atmospheric histories of methane, light hydrocarbons, molecular hydrogen, CO stable isotopes and hydroxyl radicals (OH), as well as with published CO emission inventories and results of a historical run from a chemistry-transport model. We find that the reconstructed Greenland CO history cannot be reconciled with available emission inventories unless unrealistically large changes in OH are assumed. We argue that the available CO emission inventories strongly underestimate historical NH emissions, and fail to capture the emission decline starting in the late 1970s, which was most likely due to reduced emissions from road transportation in North America and Europe.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-10-29
    Description: Water stable isotopes in Greenland ice core data provide key paleoclimatic information, and have been compared with precipitation isotopic composition simulated by isotopically-enabled atmospheric models. However, post-deposition processes linked with snow metamorphism remain poorly documented. For this purpose, a monitoring of the isotopic composition (δ18O, δD) of surface water vapor, precipitation and samples of top (0.5 cm) snow surface has been conducted during two summers (2011–2012) at NEEM, NW Greenland. The measurements also include a subset of 17O-excess measurements over 4 days, and the measurements span the 2012 Greenland heat wave. Our observations are consistent with calculations assuming isotopic equilibrium between surface snow and water vapor. We observe a strong correlation between surface vapor δ18O and air temperature (0.85 ± 0.11 ‰ °C−1 (R = 0.76) for 2012). The correlation with air temperature is not observed in precipitation data or surface snow data. Deuterium excess (d-excess) is strongly anti-correlated with δ18O with a stronger slope for vapor than for precipitation and snow surface data. During nine 1–5 days periods between precipitation events, our data demonstrate parallel changes of δ18O and d-excess in surface snow and surface vapor. The changes in δ18O of the vapor are similar or larger than those of the snow δ18O. It is estimated that 6 to 20% of the surface snow mass is exchanged with the atmosphere using the CROCUS snow model. In our data, the sign of surface snow isotopic changes is not related to the sign or magnitude of sublimation or condensation. Comparisons with atmospheric models show that day-to-day variations in surface vapor isotopic composition are driven by synoptic weather and changes in air mass trajectories and distillation histories. We suggest that, in-between precipitation events, changes in the surface snow isotopic composition are driven by these changes in surface vapor isotopic composition. This is consistent with an estimated 60% mass turnover of surface snow per day driven by snow recrystallization processes under NEEM summer surface snow temperature gradients. Our findings have implications for ice core data interpretation and model-data comparisons, and call for further process studies.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...