ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (3)
  • MDPI Publishing  (3)
  • American Chemical Society
  • Hindawi
  • Wiley-Blackwell
  • Water  (3)
  • 125281
Collection
  • Articles  (3)
Publisher
Years
  • 1
    Publication Date: 2018-08-06
    Description: Water, Vol. 10, Pages 1037: Multivariate and Spatial Analysis of Physicochemical Parameters in an Irrigation District, Chihuahua, Mexico Water doi: 10.3390/w10081037 Authors: Jesús Alejandro Prieto-Amparán Beatriz Adriana Rocha-Gutiérrez María de Lourdes Ballinas-Casarrubias María Cecilia Valles-Aragón María del Rosario Peralta-Pérez Alfredo Pinedo-Alvarez Water quality is relevant due to the complexity of the interaction of physicochemical and biological parameters. The Irrigation District 005 (ID005) is one of the most important agricultural region in Chihuahua, México; for that reason, it was proposed to investigate the water quality of the site. Water samples were collected in two periods: Summer (S1) and Fall (S2). The samples were taken from 65 wells in S1, and 54 wells in S2. Physicochemical parameters (PhP) such as Arsenic (As), Temperature, Electrical Conductivity (EC), Oxide Reduction Potential (ORP), Hardness, pH, Total Dissolved Solids (TDS), and Turbidity were analyzed. The data were subjected to statistical principal component analysis (PCA), cluster analysis (CA) and spatial variability tests. In both seasons, the TDS exceeded the Mexican maximum permissible level (MPL) (35% S1, 39% S2). Turbidity exceeded the MPL in S1 (29%) and in S2 (12%). Arsenic was above the MPL for water of agricultural use in 9% (S1) and 13% (S2) of the wells. The PCA results suggested that most variations in water quality in S1 were due to As, pH and Temperature, followed by EC, TDS and Hardness; while in S2 to EC, TDS and Hardness, followed by As and pH.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-08-18
    Description: Water, Vol. 9, Pages 602: Distributed Hydrological Modeling: Determination of Theoretical Hydraulic Potential & Streamflow Simulation of Extreme Hydrometeorological Events Water doi: 10.3390/w9080602 Authors: Sara Ibarra-Zavaleta Rosario Landgrave Rabindranarth Romero-López Annie Poulin Raúl Arango-Miranda The progressive change in climatic conditions worldwide has increased frequency and severity of extreme hydrometeorological events (EHEs). México is an example that has been affected by the occurrence of EHE leading to economic, social, and environmental losses. The objective of this research was to apply a Canadian distributed hydrological model (DHM) to tropical conditions and to evaluate its capacity to simulate flows in a basin in the central Gulf of Mexico. In addition, the DHM (once calibrated and validated) was used to calculate the theoretical hydraulic power (THP) and the performance to predict streamflow before the presence of an EHE. The results of the DHM show that the goodness of fit indicators between the observed and simulated flows in the calibration process Nash-Sutcliffe efficiency (NSE) = 0.83, ratio of the root mean square error to the standard deviation of measured data (RSR) = 0.41, and percent bias (PBIAS) = −4.3) and validation (NSE = 0.775, RSR = 0.4735, and PBIAS = 2.45) are satisfactory. The DHM showed its applicability: determination of THP showed that the mean flows are in synchrony with the order of the river reaches and streamflow simulation of 13 EHEs (NSE = 0.78 ± 0.13, RSR = 0.46 ± 0.14 and PBIAS = −0.48 ± 7.5) confirmed a reliable efficiency. This work can serve as a tool for identifying vulnerabilities before floods and for the rational and sustainable management of water resources.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-22
    Description: Water, Vol. 10, Pages 820: Efficiency Assessment of Existing Pumping/Hydraulic Network Systems to Mitigate Flooding in Low-Lying Coastal Regions under Different Scenarios of Sea Level Rise: The Mazzocchio Area Study Case Water doi: 10.3390/w10070820 Authors: Francesco Cioffi Alessandro De Bonis Trapella Federico Rosario Conticello Rising of the sea level and/or heavy rainfall intensification significantly enhance the risk of flooding in low-lying coastal reclamation areas. Therefore, there is a necessity to assess whether channel hydraulic networks and pumping systems are still efficient and reliable in managing risks of flooding in such areas in the future. This study addresses these issues for the pumping system of the Mazzocchio area, which is the most depressed area within the Pontina plain, a large reclamation region in the south of Lazio (Italy). For this area, in order to assess climate change impact, a novel methodological approach is proposed, based on the development of a simulation–optimization model, which combines a multiobjective evolutionary algorithm and a hydraulic model. For assigned extreme rainfall events and sea levels, the model calculates sets of Pareto optimal solutions which are obtained by defining two optimality criteria: (a) to minimize the flooding surface in the considered area; (b) to minimize the pumping power necessary to mitigate the flooding. The application shows that the carrying capacity of the hydraulic network downstream of the pumping system is insufficient to cope with future sea level rise and intensification of rainfall.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...