ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (5)
  • Humans  (4)
  • Amino Acid Sequence  (2)
  • *Fossils  (1)
  • 1000
  • 328
  • Chemistry and Pharmacology  (5)
  • Mathematics
Collection
  • Articles  (5)
Years
Topic
  • 1
    Publication Date: 2010-02-19
    Description: E1 enzymes activate ubiquitin (Ub) and ubiquitin-like (Ubl) proteins in two steps by carboxy-terminal adenylation and thioester bond formation to a conserved catalytic cysteine in the E1 Cys domain. The structural basis for these intermediates remains unknown. Here we report crystal structures for human SUMO E1 in complex with SUMO adenylate and tetrahedral intermediate analogues at 2.45 and 2.6 A, respectively. These structures show that side chain contacts to ATP.Mg are released after adenylation to facilitate a 130 degree rotation of the Cys domain during thioester bond formation that is accompanied by remodelling of key structural elements including the helix that contains the E1 catalytic cysteine, the crossover and re-entry loops, and refolding of two helices that are required for adenylation. These changes displace side chains required for adenylation with side chains required for thioester bond formation. Mutational and biochemical analyses indicate these mechanisms are conserved in other E1s.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2866016/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2866016/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Olsen, Shaun K -- Capili, Allan D -- Lu, Xuequan -- Tan, Derek S -- Lima, Christopher D -- F32 GM075695/GM/NIGMS NIH HHS/ -- F32 GM075695-03/GM/NIGMS NIH HHS/ -- R01 AI068038/AI/NIAID NIH HHS/ -- R01 AI068038-02/AI/NIAID NIH HHS/ -- R01 AI068038-03/AI/NIAID NIH HHS/ -- R01 GM065872/GM/NIGMS NIH HHS/ -- R01 GM065872-09/GM/NIGMS NIH HHS/ -- RR-15301/RR/NCRR NIH HHS/ -- England -- Nature. 2010 Feb 18;463(7283):906-12. doi: 10.1038/nature08765.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Biology, Sloan-Kettering Institute, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20164921" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Amino Acid Sequence ; *Biocatalysis ; Catalytic Domain/*physiology ; Conserved Sequence ; Crystallography, X-Ray ; Cysteine/chemistry/metabolism ; Humans ; Magnesium/metabolism ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; SUMO-1 Protein/*chemistry/*metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae Proteins/metabolism ; Small Ubiquitin-Related Modifier Proteins/metabolism ; Sulfides/*metabolism ; Ubiquitin/metabolism ; Ubiquitin-Activating Enzymes/*chemistry/*metabolism ; Ubiquitins/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-01-30
    Description: Heat shock protein 70 (Hsp70) is an evolutionarily highly conserved molecular chaperone that promotes the survival of stressed cells by inhibiting lysosomal membrane permeabilization, a hallmark of stress-induced cell death. Clues to its molecular mechanism of action may lay in the recently reported stress- and cancer-associated translocation of a small portion of Hsp70 to the lysosomal compartment. Here we show that Hsp70 stabilizes lysosomes by binding to an endolysosomal anionic phospholipid bis(monoacylglycero)phosphate (BMP), an essential co-factor for lysosomal sphingomyelin metabolism. In acidic environments Hsp70 binds with high affinity and specificity to BMP, thereby facilitating the BMP binding and activity of acid sphingomyelinase (ASM). The inhibition of the Hsp70-BMP interaction by BMP antibodies or a point mutation in Hsp70 (Trp90Phe), as well as the pharmacological and genetic inhibition of ASM, effectively revert the Hsp70-mediated stabilization of lysosomes. Notably, the reduced ASM activity in cells from patients with Niemann-Pick disease (NPD) A and B-severe lysosomal storage disorders caused by mutations in the sphingomyelin phosphodiesterase 1 gene (SMPD1) encoding for ASM-is also associated with a marked decrease in lysosomal stability, and this phenotype can be effectively corrected by treatment with recombinant Hsp70. Taken together, these data open exciting possibilities for the development of new treatments for lysosomal storage disorders and cancer with compounds that enter the lysosomal lumen by the endocytic delivery pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kirkegaard, Thomas -- Roth, Anke G -- Petersen, Nikolaj H T -- Mahalka, Ajay K -- Olsen, Ole Dines -- Moilanen, Irina -- Zylicz, Alicja -- Knudsen, Jens -- Sandhoff, Konrad -- Arenz, Christoph -- Kinnunen, Paavo K J -- Nylandsted, Jesper -- Jaattela, Marja -- England -- Nature. 2010 Jan 28;463(7280):549-53. doi: 10.1038/nature08710.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Apoptosis Department and Centre for Genotoxic Stress Research, Institute of Cancer Biology, Danish Cancer Society, DK-2100 Copenhagen, Denmark.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20111001" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line, Tumor ; Cells, Cultured ; HSP70 Heat-Shock Proteins/*metabolism ; Humans ; Hydrogen-Ion Concentration ; Intracellular Membranes/metabolism ; Lysophospholipids/metabolism ; Lysosomes/*metabolism/*pathology ; Monoglycerides/metabolism ; Niemann-Pick Diseases/*metabolism/*pathology ; Sphingomyelin Phosphodiesterase/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-19
    Description: Broadly neutralizing antibodies against highly variable viral pathogens are much sought after to treat or protect against global circulating viruses. Here we probed the neutralizing antibody repertoires of four human immunodeficiency virus (HIV)-infected donors with remarkably broad and potent neutralizing responses and rescued 17 new monoclonal antibodies that neutralize broadly across clades. Many of the new monoclonal antibodies are almost tenfold more potent than the recently described PG9, PG16 and VRC01 broadly neutralizing monoclonal antibodies and 100-fold more potent than the original prototype HIV broadly neutralizing monoclonal antibodies. The monoclonal antibodies largely recapitulate the neutralization breadth found in the corresponding donor serum and many recognize novel epitopes on envelope (Env) glycoprotein gp120, illuminating new targets for vaccine design. Analysis of neutralization by the full complement of anti-HIV broadly neutralizing monoclonal antibodies now available reveals that certain combinations of antibodies should offer markedly more favourable coverage of the enormous diversity of global circulating viruses than others and these combinations might be sought in active or passive immunization regimes. Overall, the isolation of multiple HIV broadly neutralizing monoclonal antibodies from several donors that, in aggregate, provide broad coverage at low concentrations is a highly positive indicator for the eventual design of an effective antibody-based HIV vaccine.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3393110/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3393110/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Walker, Laura M -- Huber, Michael -- Doores, Katie J -- Falkowska, Emilia -- Pejchal, Robert -- Julien, Jean-Philippe -- Wang, Sheng-Kai -- Ramos, Alejandra -- Chan-Hui, Po-Ying -- Moyle, Matthew -- Mitcham, Jennifer L -- Hammond, Phillip W -- Olsen, Ole A -- Phung, Pham -- Fling, Steven -- Wong, Chi-Huey -- Phogat, Sanjay -- Wrin, Terri -- Simek, Melissa D -- Protocol G Principal Investigators -- Koff, Wayne C -- Wilson, Ian A -- Burton, Dennis R -- Poignard, Pascal -- R01 AI033292/AI/NIAID NIH HHS/ -- R01 AI084817/AI/NIAID NIH HHS/ -- England -- Nature. 2011 Sep 22;477(7365):466-70. doi: 10.1038/nature10373.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology and Microbial Science and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21849977" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines/biosynthesis/immunology ; Antibodies, Monoclonal/immunology ; Antibodies, Neutralizing/*immunology ; Cell Line ; Epitope Mapping ; Epitopes/chemistry/immunology ; Glycoproteins/chemistry/immunology ; Glycosylation ; HEK293 Cells ; HIV/*classification/*immunology/isolation & purification ; HIV Antibodies/*immunology ; HIV Infections/immunology/therapy ; Human Immunodeficiency Virus Proteins/chemistry/immunology ; Humans ; Immune Sera/blood/immunology ; Molecular Sequence Data ; Neutralization Tests
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-03-25
    Description: No large group of recently extinct placental mammals remains as evolutionarily cryptic as the approximately 280 genera grouped as 'South American native ungulates'. To Charles Darwin, who first collected their remains, they included perhaps the 'strangest animal[s] ever discovered'. Today, much like 180 years ago, it is no clearer whether they had one origin or several, arose before or after the Cretaceous/Palaeogene transition 66.2 million years ago, or are more likely to belong with the elephants and sirenians of superorder Afrotheria than with the euungulates (cattle, horses, and allies) of superorder Laurasiatheria. Morphology-based analyses have proved unconvincing because convergences are pervasive among unrelated ungulate-like placentals. Approaches using ancient DNA have also been unsuccessful, probably because of rapid DNA degradation in semitropical and temperate deposits. Here we apply proteomic analysis to screen bone samples of the Late Quaternary South American native ungulate taxa Toxodon (Notoungulata) and Macrauchenia (Litopterna) for phylogenetically informative protein sequences. For each ungulate, we obtain approximately 90% direct sequence coverage of type I collagen alpha1- and alpha2-chains, representing approximately 900 of 1,140 amino-acid residues for each subunit. A phylogeny is estimated from an alignment of these fossil sequences with collagen (I) gene transcripts from available mammalian genomes or mass spectrometrically derived sequence data obtained for this study. The resulting consensus tree agrees well with recent higher-level mammalian phylogenies. Toxodon and Macrauchenia form a monophyletic group whose sister taxon is not Afrotheria or any of its constituent clades as recently claimed, but instead crown Perissodactyla (horses, tapirs, and rhinoceroses). These results are consistent with the origin of at least some South American native ungulates from 'condylarths', a paraphyletic assembly of archaic placentals. With ongoing improvements in instrumentation and analytical procedures, proteomics may produce a revolution in systematics such as that achieved by genomics, but with the possibility of reaching much further back in time.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Welker, Frido -- Collins, Matthew J -- Thomas, Jessica A -- Wadsley, Marc -- Brace, Selina -- Cappellini, Enrico -- Turvey, Samuel T -- Reguero, Marcelo -- Gelfo, Javier N -- Kramarz, Alejandro -- Burger, Joachim -- Thomas-Oates, Jane -- Ashford, David A -- Ashton, Peter D -- Rowsell, Keri -- Porter, Duncan M -- Kessler, Benedikt -- Fischer, Roman -- Baessmann, Carsten -- Kaspar, Stephanie -- Olsen, Jesper V -- Kiley, Patrick -- Elliott, James A -- Kelstrup, Christian D -- Mullin, Victoria -- Hofreiter, Michael -- Willerslev, Eske -- Hublin, Jean-Jacques -- Orlando, Ludovic -- Barnes, Ian -- MacPhee, Ross D E -- England -- Nature. 2015 Jun 4;522(7554):81-4. doi: 10.1038/nature14249. Epub 2015 Mar 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] BioArCh, University of York, York YO10 5DD, UK [2] Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany. ; BioArCh, University of York, York YO10 5DD, UK. ; Department of Earth Sciences, Natural History Museum, London SW7 5BD, UK. ; Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Oster Voldgade 5-7, 1350 Copenhagen K, Denmark. ; Institute of Zoology, Zoological Society of London, London NW1 4RY, UK. ; CONICET- Division Paleontologia de Vertebrados, Museo de La Plata. Facultad de Ciencias Naturales y Museo de La Plata, Universidad Nacional de La Plata. Paseo del Bosque s/n, B1900FWA, La Plata, Argentina. ; Seccion Paleontologia de Vertebrados. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", 470 Angel Gallardo Av., C1405DJR, Buenos Aires, Argentina. ; Institute of Anthropology, Johannes Gutenberg-University, Anselm-Franz-von-Bentzel-Weg 7, D-55128 Mainz, Germany. ; Department of Chemistry, University of York, York YO10 5DD, UK. ; Bioscience Technology Facility, Department of Biology, University of York, York YO10 5DD, UK. ; Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA. ; Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK. ; Applications Development, Bruker Daltonik GmbH, 28359 Bremen, Germany. ; Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen, Denmark. ; Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, UK. ; Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland. ; 1] BioArCh, University of York, York YO10 5DD, UK [2] Institute for Biochemistry and Biology, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam OT Golm, Germany. ; Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany. ; Department of Mammalogy, American Museum of Natural History, New York, New York 10024, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25799987" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Bone and Bones/chemistry ; Cattle ; Collagen Type I/*chemistry/genetics ; Female ; *Fossils ; Mammals/*classification ; Perissodactyla/classification ; *Phylogeny ; Placenta ; Pregnancy ; Proteomics ; South America
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-04-28
    Description: The bacterial CRISPR/Cas9 system allows sequence-specific gene editing in many organisms and holds promise as a tool to generate models of human diseases, for example, in human pluripotent stem cells. CRISPR/Cas9 introduces targeted double-stranded breaks (DSBs) with high efficiency, which are typically repaired by non-homologous end-joining (NHEJ) resulting in nonspecific insertions, deletions or other mutations (indels). DSBs may also be repaired by homology-directed repair (HDR) using a DNA repair template, such as an introduced single-stranded oligo DNA nucleotide (ssODN), allowing knock-in of specific mutations. Although CRISPR/Cas9 is used extensively to engineer gene knockouts through NHEJ, editing by HDR remains inefficient and can be corrupted by additional indels, preventing its widespread use for modelling genetic disorders through introducing disease-associated mutations. Furthermore, targeted mutational knock-in at single alleles to model diseases caused by heterozygous mutations has not been reported. Here we describe a CRISPR/Cas9-based genome-editing framework that allows selective introduction of mono- and bi-allelic sequence changes with high efficiency and accuracy. We show that HDR accuracy is increased dramatically by incorporating silent CRISPR/Cas-blocking mutations along with pathogenic mutations, and establish a method termed 'CORRECT' for scarless genome editing. By characterizing and exploiting a stereotyped inverse relationship between a mutation's incorporation rate and its distance to the DSB, we achieve predictable control of zygosity. Homozygous introduction requires a guide RNA targeting close to the intended mutation, whereas heterozygous introduction can be accomplished by distance-dependent suboptimal mutation incorporation or by use of mixed repair templates. Using this approach, we generated human induced pluripotent stem cells with heterozygous and homozygous dominant early onset Alzheimer's disease-causing mutations in amyloid precursor protein (APP(Swe)) and presenilin 1 (PSEN1(M146V)) and derived cortical neurons, which displayed genotype-dependent disease-associated phenotypes. Our findings enable efficient introduction of specific sequence changes with CRISPR/Cas9, facilitating study of human disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Paquet, Dominik -- Kwart, Dylan -- Chen, Antonia -- Sproul, Andrew -- Jacob, Samson -- Teo, Shaun -- Olsen, Kimberly Moore -- Gregg, Andrew -- Noggle, Scott -- Tessier-Lavigne, Marc -- 8 UL1 TR000043/TR/NCATS NIH HHS/ -- T32GM007739/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2016 May 5;533(7601):125-9. doi: 10.1038/nature17664. Epub 2016 Apr 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Brain Development and Repair, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA. ; The New York Stem Cell Foundation Research Institute, New York, New York 10032, USA. ; Weill Cornell Graduate School of Medical Sciences, The Rockefeller University and Sloan-Kettering Institute Tri-institutional MD-PhD Program, 1300 York Avenue, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27120160" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Age of Onset ; Alleles ; Alzheimer Disease/genetics ; Amyloid beta-Protein Precursor/genetics/secretion ; Animals ; Base Sequence ; CRISPR-Cas Systems/*genetics ; DNA Breaks, Double-Stranded ; DNA Cleavage ; DNA Repair/genetics ; Female ; Genes, Dominant/genetics ; Genetic Association Studies ; Genetic Engineering/*methods ; *Heterozygote ; *Homozygote ; Humans ; Induced Pluripotent Stem Cells/metabolism ; Male ; Mice ; Mutagenesis/*genetics ; Mutation/*genetics ; Presenilins/genetics ; RNA, Guide/genetics ; Sequence Homology ; Substrate Specificity ; Templates, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...