ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • English  (7)
  • 2020-2023  (7)
  • 2020-2022
  • 1970-1974
  • 1965-1969
Collection
Language
  • English  (7)
Years
Year
  • 1
    Publication Date: 2022-12-01
    Description: Over the last years, installations of wind turbines (WTs) increased worldwide. Owing to negative effects on humans, WTs are often installed in areas with low population density. Because of low anthropogenic noise, these areas are also well suited for sites of seismological stations. As a consequence, WTs are often installed in the same areas as seismological stations. By comparing the noise in recorded data before and after installation of WTs, seismologists noticed a substantial worsening of station quality leading to conflicts between the operators of WTs and earthquake services. In this study, we compare different techniques to reduce or eliminate the disturbing signal from WTs at seismological stations. For this purpose, we selected a seismological station that shows a significant correlation between the power spectral density and the hourly windspeed measurements. Usually, spectral filtering is used to suppress noise in seismic data processing. However, this approach is not effective when noise and signal have overlapping frequency bands which is the case for WT noise. As a first method, we applied the continuous wavelet transform (CWT) on our data to obtain a time-scale representation. From this representation, we estimated a noise threshold function (Langston & Mousavi, 2019) either from noise before the theoretical P-arrival (pre-noise) or using a noise signal from the past with similar ground velocity conditions at the surrounding WTs. Therefore, we installed low cost seismometers at the surrounding WTs to find similar signals at each WT. From these similar signals, we obtain a noise model at the seismological station, which is used to estimate the threshold function. As a second method, we used a denoising autoencoder (DAE) that learns mapping functions to distinguish between noise and signal (Zhu et al., 2019). In our tests, the threshold function performs well when the event is visible in the raw or spectral filtered data, but it fails when WT noise dominates and the event is hidden. In these cases, the DAE removes the WT noise from the data. However, the DAE must be trained with typical noise samples and high signal-to-noise ratio events to distinguish between signal and interfering noise. Using the threshold function and pre-noise can be applied immediately on real-time data and has a low computational cost. Using a noise model from our prerecorded database at the seismological station does not improve the result and it is more time consuming to find similar ground velocity conditions at the surrounding WTs.
    Description: poster
    Keywords: ddc:550
    Language: English
    Type: doc-type:conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-12-01
    Description: FloodRisk is an interdisciplinary project focusing on the effects of mine water level rise in bandoned coal mine regions in Germany. Such effects are heterogeneous ground uplift, stress changes due to the change in pore pressure and the reactivation of potential faults. One of the most directly measurable effects is certainly the induced micro seismicity. It is known from previous studies that the flooding of old mines can lead to a renewed increase level in induced micro seismicity in these regions. In this study the relationship between mine water rise, fluid-induced stress changes and induced seismicity in the Haus Aden dewatering area in the eastern Ruhr area (Germany) will be investigated in more detail. For this purpose, we operate a network of currently 21 short period seismic stations in the region of the former "Bergwerk Ost" colliery, which had the highest seismicity rate in the Ruhr area during active underground coal mining. This network is still to be expanded to cover the entire water drainage area, about 30 Raspberry Shake sensors are waiting for the possibility of installation. Nevertheless, the existing network registered almost 1000 induced micro seismic events in a magnitude range from -0.7 up to 2.6 MLv. Many of these events are spatially clustered and some show quite high waveform similarity. This allows relative localisation and can increase the accuracy of the location. The depth location of the earthquakes, within the limits of localisation accuracy, agrees very well with the distribution of seismicity at the time of active mining. The spatial distribution so far seems to be limited by a large inactive transverse fault in the west. It needs to be clarified what influence this fault has on the propagation of mine water in the underground. The measured temporal trend of the mine water level, after pumps were shut down in mid-2019, shows a strong correlation with the temporal evolution of the observed micro seismicity. In the first months after the pumps are switched off, the water levels at the observation points rise only slowly and isolated microseismic events occur again. In November 2019, the rise in water levels doubled and at the same time, the strongest induced event in the measurement period was recorded with a magnitude of 2.6 MLv . In the following months, the seismicity rate ranged from 8 to 34 events above 0.5 MLv per month, some of which were felt.
    Description: Bundesministerium für Bildung und Forschung
    Description: poster
    Keywords: ddc:550 ; induced microseismicity ; FloodRisk ; waveform similarity ; raising mine water level
    Language: English
    Type: doc-type:conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-12-01
    Description: The Floodrisk project takes a muti- and interdisciplinary look on the effects of the rise in mine water level in abandoned coal mine regions in Germany. Such effects are heterogeneous ground uplift, stress changes due to the pore pressure changes and the reactivation potential of faults. One of the most directly measurable effects is the induced seismicity. It is known from previous studies that the flooding of old mines can lead to a renewed increase in induced microseismicity in these regions. We focused on the observation of the eastern Ruhr area and investigate in detail the relationship between mine water rise and induced seismicity in the Haus Aden dewatering area. For this purpose, we operate a network of up to 30 short period seismic stations in the region of the former "Bergwerk Ost" colliery, which had the highest seismicity rate in the Ruhr area during active mining. Continuous monitoring of seismicity and mine water levels is available for this region from the active mining phase, through the post-mining phase to flooding. Since the beginning of the flooding, more than 20000 onsets were picked and over 1700 induced events were localised in a magnitude range from -0.7 up to 2.6 MLv. For some larger events, focal mechanisms could be determined. The spatial distribution of hypocentres is divided into two areas, with few events in the central study area and over 95% of earthquakes in its eastern part. Many of these events are spatially clustered and some show quite high waveform similarity. This allows relative localisation to increase the accuracy of the location. Comparing the old galleries,which today serve as the main underground waterways, with the localisations from the relative localisation, strong correlations can be seen. The measured temporal trend of the mine water level, after pumps were shut down in mid-2019, shows a strong correlation with the temporal evolution of the observed micro seismicity. In the first months after the pumps are switched off, the water levels at the observation points rise only slowly and isolated microseismic events occur again. In November 2019, the rise in water levels doubled and at the same time, the strongest induced event in the measurement period was recorded with a magnitude of 2.6 MLv. In the years 2020, 2021 66 and 58 events 〉= MLv 1 were observed, respectively. In contrast to this number only 2- 9 events 〉= MLv 1 per year were observed in the post-minig phase before flooding.
    Description: Bundesministerium für Bildung und Forschung
    Description: poster
    Keywords: ddc:550 ; induced seismicity ; post mining ; mine water rise ; Ruhr Area
    Language: English
    Type: doc-type:conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-12-01
    Description: NEXD is an open source software package for the simulation of seismic waves in complex geological media. This includes elastic, viscoelastic, porous and fractured media with complex geometries. For the computation of the wave fields, the nodal discontinuous Galerkin approach (NDG) is used. The NDG approach combines unstructured tetrahedral meshes with an element-wise, high-order spatial interpolation of the wave field based on Lagrange polynomials. NEXD offers capabilities for modeling wave propagation in one-, two- and three-dimensional settings of very different spatial scale with little logistical overhead. It allows the import of external triangular (2D) and tetrahedral (3D) meshes provided by independent meshing software and can be run in a parallel computing environment. The computation of adjoint wavefields and an interface for the computation of waveform sensitivity kernels are offered. The method is verified by means of symmetry tests and the method of exact solutions. The capabilities of NEXD are demonstrated through, for example, a 2D synthetic survey of a geological carbon storage site. The most recent developments have been the inclusion of porous media in 2D and the inversion capabilities to the latest release versions of the 2D and 3D codes as well as the release of the 1D code. NEXD is available on GitHub: https://github.com/seismology-RUB.
    Description: poster
    Keywords: ddc:550 ; Numerical modelling ; Computational seismology ; Wave propagation
    Language: English
    Type: doc-type:conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-12-01
    Description: Modelling the propagation of seismic waves in porous media gets more and more popular in the seismological community since it is an important but challenging task in the field of computational seismology. The fluid content of, for example, reservoir rocks or soils, and the interaction between the fluid and the rock or between different immiscible fluids has to be taken into account to accurately describe seismic wave propagation through such porous media. Often, numerical models are based on the elastic wave equation and some might include artificially introduced attenuation. This simplifies the problem but only approximates the true physics involved. Hence, the results are also simplified and could lack accuracy or miss phenomena in some applications. The aim of the conducted work was the consistent derivation of a theory for seismic wave propagation in porous media saturated by two immiscible fluids and the accompanying numerical solution for the derived wave equation. The theory is based on Biot's theory of poroelasticity. Starting from the basic conservation equations (energy, momentum, etc.) and generally accepted laws, the theory was derived using a macroscopic approach which demands that the wavelength is significantly larger than the size of the heterogeneities in the medium due to the size of the grains and pores or due to effects on the mesoscopic scale. This condition is usually fulfilled for seismic waves since the typical wavelength of seismic waves is in the order of 10 m to 10 km. Fluid flow is described by a Darcy type flow law and interactions between the fluids by means of capillary pressure curve models. In addition, consistent boundary conditions on interfaces between poroelastic media and elastic or acoustic media are derived from this poroelastic theory itself. The nodal discontinuous Galerkin method is used for the numerical modelling. The poroelastic solver is integrated into the 1D and 2D codes of the larger software package NEXD that uses the nodal discontinuous Galerkin method to solve wave equations. The implementation has been verified using symmetry tests and the method of exact solutions. This work has potential for applications in various scientific fields like, for example, exploration and monitoring of hydrocarbon or geothermal reservoirs as well as CO2 storage sites.
    Description: poster
    Keywords: ddc:550
    Language: English
    Type: doc-type:conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-12-21
    Description: We present an extensive dataset of highly accurate absolute travel times and travel-time residuals of teleseismic P waves recorded by the AlpArray Seismic Network and complementary field experiments in the years from 2015 to 2019. The dataset is intended to serve as the basis for teleseismic travel-time tomography of the upper mantle below the greater Alpine region. In addition, the data may be used as constraints in full-waveform inversion of AlpArray recordings. The dataset comprises about 170 000 onsets derived from records filtered to an upper-corner frequency of 0.5 Hz and 214 000 onsets from records filtered to an upper-corner frequency of 0.1 Hz. The high accuracy of absolute and residual travel times was obtained by applying a specially designed combination of automatic picking, waveform cross-correlation and beamforming. Taking travel-time data for individual events, we are able to visualise in detail the wave fronts of teleseismic P waves as they propagate across AlpArray. Variations of distances between isochrons indicate structural perturbations in the mantle below. Travel-time residuals for individual events exhibit spatially coherent patterns that prove to be stable if events of similar epicentral distance and azimuth are considered. When residuals for all available events are stacked, conspicuous areas of negative residuals emerge that indicate the lateral location of subducting slabs beneath the Apennines and the western, central and eastern Alps. Stacking residuals for events from 90∘ wide azimuthal sectors results in lateral distributions of negative and positive residuals that are generally consistent but differ in detail due to the differing direction of illumination of mantle structures by the incident P waves. Uncertainties of travel-time residuals are estimated from the peak width of the cross-correlation function and its maximum value. The median uncertainty is 0.15 s at 0.5 Hz and 0.18 s at 0.1 Hz, which is more than 10 times lower than the typical travel-time residuals of up to ±2 s. Uncertainties display a regional dependence caused by quality differences between temporary and permanent stations as well as site-specific noise conditions.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-12-21
    Description: We perform a teleseismic P-wave travel-time tomography to examine the geometry and structure of subducted lithosphere in the upper mantle beneath the Alpine orogen. The tomography is based on waveforms recorded at over 600 temporary and permanent broadband stations of the dense AlpArray Seismic Network deployed by 24 different European institutions in the greater Alpine region, reaching from the Massif Central to the Pannonian Basin and from the Po Plain to the river Main. Teleseismic travel times and travel-time residuals of direct teleseismic P waves from 331 teleseismic events of magnitude 5.5 and higher recorded between 2015 and 2019 by the AlpArray Seismic Network are extracted from the recorded waveforms using a combination of automatic picking, beamforming and cross-correlation. The resulting database contains over 162 000 highly accurate absolute P-wave travel times and travel-time residuals. For tomographic inversion, we define a model domain encompassing the entire Alpine region down to a depth of 600 km. Predictions of travel times are computed in a hybrid way applying a fast TauP method outside the model domain and continuing the wave fronts into the model domain using a fast marching method. We iteratively invert demeaned travel-time residuals for P-wave velocities in the model domain using a regular discretization with an average lateral spacing of about 25 km and a vertical spacing of 15 km. The inversion is regularized towards an initial model constructed from a 3D a priori model of the crust and uppermost mantle and a 1D standard earth model beneath. The resulting model provides a detailed image of slab configuration beneath the Alpine and Apenninic orogens. Major features are a partly overturned Adriatic slab beneath the Apennines reaching down to 400 km depth still attached in its northern part to the crust but exhibiting detachment towards the southeast. A fast anomaly beneath the western Alps indicates a short western Alpine slab whose easternmost end is located at about 100 km depth beneath the Penninic front. Further to the east and following the arcuate shape of the western Periadriatic Fault System, a deep-reaching coherent fast anomaly with complex internal structure generally dipping to the SE down to about 400 km suggests a slab of European origin limited to the east by the Giudicarie fault in the upper 200 km but extending beyond this fault at greater depths. In its eastern part it is detached from overlying lithosphere. Further to the east, well-separated in the upper 200 km from the slab beneath the central Alps but merging with it below, another deep-reaching, nearly vertically dipping high-velocity anomaly suggests the existence of a slab beneath the eastern Alps of presumably the same origin which is completely detached from the orogenic root. Our image of this slab does not require a polarity switch because of its nearly vertical dip and full detachment from the overlying lithosphere. Fast anomalies beneath the Dinarides are weak and concentrated to the northernmost part and shallow depths. Low-velocity regions surrounding the fast anomalies beneath the Alps to the west and northwest follow the same dipping trend as the overlying fast ones, indicating a kinematically coherent thick subducting lithosphere in this region. Alternatively, these regions may signify the presence of seismic anisotropy with a horizontal fast axis parallel to the Alpine belt due to asthenospheric flow around the Alpine slabs. In contrast, low-velocity anomalies to the east suggest asthenospheric upwelling presumably driven by retreat of the Carpathian slab and extrusion of eastern Alpine lithosphere towards the east while low velocities to the south are presumably evidence of asthenospheric upwelling and mantle hydration due to their position above the European slab.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...