ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (4)
  • NASA Technical Reports  (4)
  • ELECTRONIC COMPONENTS AND CIRCUITS  (2)
  • ENERGY PRODUCTION AND CONVERSION  (2)
  • 1995-1999  (4)
  • 1950-1954
  • 1
    Publication Date: 2019-01-25
    Description: It is well known that the behavior of III-V compound based solar cells is largely controlled by their surface, since the majority of light generated carriers (63% for GaAs and 79% for InP) are created within 0.2 mu m of the surface of the illuminated cell. Consequently, the always observed high surface recombination velocity (SRV) on these cells is a serious limiting factor for their high efficiency performance, especially for those with p-n junction made by either thermal diffusion or ion implantation. A good surface passivation layer, ideally a grown oxide as opposed to a deposited one, will cause a significant reduction in the SRV without adding interface problems, thus improving the performance of III-V compound based solar cells. Another significant benefit to the overall performance of the solar cells can be achieved by a substantial reduction of their large surface optical reflection by the use of a well designed antireflection (AR) coating. In this paper, we demonstrate the effectiveness of using a chemically grown thermally and chemically stable oxide, not only for surface passivation but also as an integral part of a 3-layer AR coating for thermally diffused p+n InP solar cells. A phosphorus-rich interfacial oxide, In(PO3)3, is grown at the surface of the p+ emitter using an etchant based on HNO3, o-H3PO4 and H2O2. This oxide has the unique properties of passivating the surface as well as serving as an efficient antireflective layer yielding a measured record high AMO open-circuit voltage of 890.3 mV on a thermally diffused InP(Cd,S) solar cell. Unlike conventional single layer AR coatings such as ZnS, Sb2O3, SiO or double layer AR coatings such as ZnS/MgF2 deposited by e-beam or resistive evaporation, this oxide preserves the stoichiometry of the InP surface. We show that it is possible to design a three-layer AR coating for a thermally diffused InP solar cell using the In(PO3)3 grown oxide as the first layer and Al2O3 and MgF2 as the second and third layers respectively, so as to yield an overall theoretical reflectance of less than 2%. Since chemical oxides are readily grown on III-V semiconductors materials, the technique of using the grown oxide layer to both passivate the surface as well as serve as the first of a multilayer AR coating should work well for all III-V compound-based solar cells.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: Proceedings of the 14th Space Photovoltaic Research and Technology Conference (SPRAT 14); p 2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Proposed method of obtaining approximately desired radiation or reception pattern from antenna that includes reflector based on concept of superposition of electromagnetic fields generated by multiple feedhorns or feed antenna elements arrayed at various positions near reflector and excited at electronically adjustable magnitudes and phases. In intended application, reflector nominally paraboloidal, feed elements N feedhorns in hexagonal array, and method used to compensate for deviations of real reflector surface from nominal paraboloidal shape. Method and concept also applicable to electronic beam steering and electronic antenna compensation in other situations.
    Keywords: ELECTRONIC COMPONENTS AND CIRCUITS
    Type: LAR-14461 , NASA Tech Briefs (ISSN 0145-319X); 19; 1; P. 32
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The current generation of communications satellites are located primarily in geosynchronous Earth orbit (GEO). Over the next decade, however, a new generation of communications satellites will be built and launched, designed to provide a world-wide interconnection of portable telephones. For this mission, the satellites must be positioned in lower polar and near-polar orbits. To provide complete coverage, large numbers of satellites will be required. Because the required number of satellites decreases as the orbital altitude is increased, fewer satellites would be required if the orbit chosen were raised from low to intermediate orbit. However, in intermediate orbits, satellites encounter significant radiation due to trapped electrons and protons. Radiation tolerant solar cells may be necessary to make such satellites feasible. We analyze the amount of radiation encountered in low and intermediate polar orbits at altitudes of interest to next-generation communication satellites, calculate the expected degradation for silicon, GaAs, and InP solar cells, and show that the lifetimes can be significantly increased by use of advanced solar cells.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA-TM-106879 , E-9515 , NAS 1.15:106879 , First World Conference on Photovoltaic Energy Conversion; Dec 05, 1994 - Dec 09, 1994; Waikoloa, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: Mutual Coupling Program for Circular Waveguide-fed Aperture Array (CWG) computer program developed to calculate electromagnetic interactions among elements of antenna arrays with circular apertures with specified distributions of electromagnetic fields in apertures. Distributions assumed superpositions of electromagnetic modes existing in circular waveguide. Various external media included to provide flexibility of use; for example, flexibility to determine effects of dielectric covers upon impedances of aperture-type antennas. Written in VAX FORTRAN for DEC VAX-series computers running VMS (LAR-15236) and IBM PC-series and compatible computers running MS-DOS (LAR-15226).
    Keywords: ELECTRONIC COMPONENTS AND CIRCUITS
    Type: LAR-15226 , LAR-15236 , NASA Tech Briefs (ISSN 0145-319X); 19; 4; P. 62
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...