ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (7)
  • NASA Technical Reports  (7)
  • Physics (General)
  • 2000-2004  (5)
  • 1995-1999  (2)
  • 1
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Physics (General)
    Type: Article-042716 , Physics Review A; 66
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-29
    Description: The framework for constructing a high-order, conservative Spectral (Finite) Volume (SV) method is presented for two-dimensional scalar hyperbolic conservation laws on unstructured triangular grids. Each triangular grid cell forms a spectral volume (SV), and the SV is further subdivided into polygonal control volumes (CVs) to supported high-order data reconstructions. Cell-averaged solutions from these CVs are used to reconstruct a high order polynomial approximation in the SV. Each CV is then updated independently with a Godunov-type finite volume method and a high-order Runge-Kutta time integration scheme. A universal reconstruction is obtained by partitioning all SVs in a geometrically similar manner. The convergence of the SV method is shown to depend on how a SV is partitioned. A criterion based on the Lebesgue constant has been developed and used successfully to determine the quality of various partitions. Symmetric, stable, and convergent linear, quadratic, and cubic SVs have been obtained, and many different types of partitions have been evaluated. The SV method is tested for both linear and non-linear model problems with and without discontinuities.
    Keywords: Physics (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-31
    Description: Two 214.5 cm. long high performance periodic (26 cm period) permanent magnet half-assemblies were designed and constructed for use as a wiggler using Nd-B-Fe and vanadium permendur as hard and soft magnetic materials by Field Effects, a division of Intermagnetics General Corporation. Placing these assemblies in a supporting structure with a 2.1 cm pole to pole separation resulted in a periodic field with a maximum value of 2.04 T. This is believed to be the highest field ever achieved by this type of device. The attractive force between the two 602 kg magnet assemblies is 228 kN, providing enough force for suspension of a 45,500 kg vehicle. If used in an attractive maglev system with an appropriate flat iron rail, one assembly will generate the same force with a gap of 1.05 cm leading to a lift to weight ratio of 38.6, not including the vehicle attachment structure. This permanent magnet compares well with superconducting systems which have lift to weight ratios in the range of 5 to 10. This paper describes the magnet assemblies and their measured magnetic performance. The measured magnetic field and resulting attractive magnetic force have a negative spring characteristic. Appropriate control coils are necessary to provide stable operation. The estimated performance of the assemblies in a stable repulsive mode, with eddy currents in a conducting guideway, is also discussed.
    Keywords: Physics (General)
    Type: Third International Symposium on Magnetic Suspension Technology; Part 2; 655-677; NASA-CP-3336-Pt-2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-05
    Description: Amorphous polyimides containing polar functional groups have been synthesized and investigated for potential use as high temperature piezoelectric sensors. The thermal stability of the piezoelectric effect of one polyimide was evaluated as a function of various curing and poling conditions under dynamic and static thermal stimuli. First, the polymer samples were thermally cycled under strain by systematically increasing the maximum temperature from 50 C to 200 C while the piezoelectric strain coefficient was being measured. Second, the samples were isothermally aged at an elevated temperature in air, and the isothermal decay of the remanent polarization was measured at room temperature as a function of time. Both conventional and corona poling methods were evaluated. This material exhibited good thermal stability of the piezoelectric properties up to 100 C.
    Keywords: Physics (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-08
    Description: The sizes and concentrations of capped and surface InGaAs/GaAs quantum dots (QDs) grown under the same conditions have been investigated.
    Keywords: Physics (General)
    Type: Applied Physics Letters; Volume 76; no. 12; 1558-1560
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: Temperature effects can be important in short pulse propagation or in CW operation of VCSELs. In those cases, the optical susceptibility function is, in general, a function of carrier density and plasma and/or lattice temperature(s). Just as there is an alpha factor induced by the density change (density alpha), there are alpha factors induced by lattice or plasma temperature change (temperature alphas). The density alpha factor has been studied quite extensively, while the temperature alpha factors have not been computed for any structure. I will report on my first calculations of alpha factors induced by the plasma and lattice temperature change for GaAs/AlGaAs quantum wells using microscopic theory. Besides, the temperature dependence of the density alpha factor is also considered.
    Keywords: Physics (General)
    Type: Physics and Simulation of Optoelectronic Devices Symposium; Jan 01, 1998; San Jose, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-12
    Description: Semiconductor electron-spin filters of a proposed type would be based on the Rashba effect, which is described briefly below. Electron-spin filters more precisely, sources of spin-polarized electron currents have been sought for research on, and development of, the emerging technological discipline of spintronics (spin-based electronics). There have been a number of successful demonstrations of injection of spin-polarized electrons from diluted magnetic semiconductors and from ferromagnetic metals into nonmagnetic semiconductors. In contrast, a device according to the proposal would be made from nonmagnetic semiconductor materials and would function without an applied magnetic field. The Rashba effect, named after one of its discoverers, is an energy splitting, of what would otherwise be degenerate quantum states, caused by a spin-orbit interaction in conjunction with a structural-inversion asymmetry in the presence of interfacial electric fields in a semiconductor heterostructure. The magnitude of the energy split is proportional to the electron wave number. The present proposal evolved from recent theoretical studies that suggested the possibility of devices in which electron energy states would be split by the Rashba effect and spin-polarized currents would be extracted by resonant quantum-mechanical tunneling. Accordingly, a device according to the proposal would be denoted an asymmetric resonant interband tunneling diode [a-RITD]. An a-RITD could be implemented in a variety of forms, the form favored in the proposal being a double-barrier heterostructure containing an asymmetric quantum well. It is envisioned that a-RITDs would be designed and fabricated in the InAs/GaSb/AlSb material system for several reasons: Heterostructures in this material system are strong candidates for pronounced Rashba spin splitting because InAs and GaSb exhibit large spin-orbit interactions and because both InAs and GaSb would be available for the construction of highly asymmetric quantum wells. This mate-rial system affords a variety of energy-band alignments that can be exploited to obtain resonant tunneling and other desired effects. The no-common-atom InAs/GaSb and InAs/AlSb interfaces would present opportunities for engineering interface potentials for optimizing Rashba spin splitting.
    Keywords: Physics (General)
    Type: NPO-30635 , NASA Tech Briefs, October 2004; 25-26
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...