ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (12)
  • NASA Technical Reports  (12)
  • Man/System Technology and Life Support  (5)
  • Spacecraft Design, Testing and Performance  (5)
  • Space Sciences (General)  (2)
  • 2005-2009  (12)
  • 2009  (7)
  • 2005  (5)
Collection
  • Other Sources  (12)
Source
  • NASA Technical Reports  (12)
Years
  • 2005-2009  (12)
Year
  • 1
    Publication Date: 2019-07-19
    Description: During post-flight processing of STS-116, damage to crewmember Robert Curbeam's Phase VI Glove Thermal Micrometeoroid Garment was discovered. This damage consisted of: loss of RTV-157 palm pads on the thumb area on the right glove, a 0.75 inch cut in the Vectran adjacent to the seam and thumb pad (single event cut), constituting the worst glove damage ever recorded for the U.S. space program. The underlying bladder and restraint were found not be damaged by this event. Evaluation of glove damage found that the outer Vectran fibers were sliced as a result of contact with a sharp edge or pinch point rather than general wear or abrasion (commonly observed on the RTV pads). Damage to gloves was also noted on STS-118 and STS-120. One potential source of EMU glove damages are sharp crater lips on external handrails, generated by micrometeoroid and orbital debris (MMOD) impacts. In this paper, the results of a hypervelocity impact (HVI) test program on representative and actual ISS handrails are presented. These tests were performed in order to characterize impact damage profiles on ISS handrails and evaluate alternatives for limiting risk to future missions. It was determined that both penetrating and non-penetrating MMOD impacts on aluminum and steel ISS handrails are capable of generating protruding crater profiles which exceed the heights required for EMU glove abrasion risk by an order of magnitude. Testing demonstrated that flexible overwraps attached to the outside of existing handrails are capable of limiting contact between hazardous crater formations and crewmember gloves during extravehicular activity (EVA). Additionally, replacing metallic handrails with high strength, low ductility, fiber reinforced composite materials would limit the formation of protruding crater lips on new ISS modules.
    Keywords: Man/System Technology and Life Support
    Type: JSC-17548 , 5th European Conference on Space Debris; Mar 30, 2009 - Apr 02, 2009; Darmstadt; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-12
    Description: Auto-Generated Semantic Processing (AGSP) Services is a suite of software tools for automated generation of other computer programs, denoted cross-platform semantic adapters, that support interoperability of computer-based communication systems that utilize a variety of both new and legacy communication software running in a variety of operating- system/computer-hardware combinations. AGSP has numerous potential uses in military, space-exploration, and other government applications as well as in commercial telecommunications. The cross-platform semantic adapters take advantage of common features of computer- based communication systems to enforce semantics, messaging protocols, and standards of processing of streams of binary data to ensure integrity of data and consistency of meaning among interoperating systems. The auto-generation aspect of AGSP Services reduces development time and effort by emphasizing specification and minimizing implementation: In effect, the design, building, and debugging of software for effecting conversions among complex communication protocols, custom device mappings, and unique data-manipulation algorithms is replaced with metadata specifications that map to an abstract platform-independent communications model. AGSP Services is modular and has been shown to be easily integrable into new and legacy NASA flight and ground communication systems.
    Keywords: Man/System Technology and Life Support
    Type: KSC-13072 , NASA Tech Briefs, May 2009; 15
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-13
    Description: This viewgraph presentation reviews the standards for space flight hardware based on human capabilities and limitations. The contents include: 1) Scope; 2) Applicable documents; 3) General; 4) Human Physical Characteristics and Capabilities; 5) Human Performance and Cognition; 6) Natural and Induced Environments; 7) Habitability Functions; 8) Architecture; 9) Hardware and Equipment; 10) Crew Interfaces; 11) Spacesuits; 12) Operatons: Reserved; 13) Ground Maintenance and Assembly: Reserved; 14) Appendix A-Reference Documents; 15) Appendix N-Acronyms and 16) Appendix C-Definition. Volume 2 is supported by the Human Integration Design Handbook (HIDH)s.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-18589 , NASA Advisory Council Meeting; Jul 14, 2009 - Jul 15, 2009; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The Magnetic Transition Region Probe is a space telescope designed to measure the magnetic field at several heights and temperatures in the solar atmosphere, providing observations spanning the chromospheric region where the field is expected to become force free. The primary goal is to provide an early warning system (hours to days) for solar energetic particle events that pose a serious hazard to astronauts in deep space and to understand the source regions of these particles. The required magnetic field data consist of simultaneous circular and linear polarization measurements in several spectral lines over the wavelength range from 150 to 855 nm. Because the observations are photon limited an optical telescope with a large (〉18sq m) collecting area is required. To keep the heat dissipation problem manageable we have chosen to implement MTRAP with six separate Gregorian telescopes, each with approx. 3 sq m collecting area, that are brought to a common focus. The large field of view (5 x 5 arcmin(sup 2)) and angular resolution (0.025 arcsec pixels) require large detector arrays and, because of the requirements on signal to noise (10(exp 3)), pixels with large full well depths to reduce the readout time and improve the temporal resolution. The optical and engineering considerations that have gone into the development of a concept that meets MTRAP's requirements are described.
    Keywords: Space Sciences (General)
    Type: SPIE Paper 5901-40 , SPIE Optics and Photonics; Jul 31, 2005 - Aug 04, 2005; San Diego, CA; United States|Proceedings of SPIE; 5901
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-11
    Description: The Space Shuttle Program (SSP) has a zero-fault-tolerant design related to an inadvertent firing of the primary reaction control jets on the Orbiter during mated operations with the International Space Station (ISS). Failure modes identified by the program as a wire-to-wire "smart" short or a Darlington transistor short resulting in a failed-on primary thruster during mated operations with ISS can drive forces that exceed the structural capabilities of the docked Shuttle/ISS structure. The assessment team delivered 17 observations, 6 findings and 15 recommendations to the Space Shuttle Program.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NASA/TM-2005-213750/VERSION1.0 , L-19119/VERSION1.0 , NESC-RP-05-18-Version-1.0
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Safe and reliable seal materials for high-pressure oxygen systems sometimes appear to be extinct species when sought out by oxygen systems designers. Materials that seal well are easy to find, but these materials are typically incompatible with oxygen, especially in cryogenic liquid form. This incompatibility can result in seals that leak, or much worse, seals that easily ignite and burn during use. Materials that are compatible with oxygen are easy to find, such as the long list of compatible metals, but these metallic materials are limiting as seal materials. A material that seals well and is oxygen compatible has been the big game in the designer's safari. Scientists at the Materials Combustion Research Facility (MCRF), part of NASA/Marshall Space Flight Center (MSFC), are constantly searching for better materials and processes to improve the safety of oxygen systems. One focus of this effort is improving the characteristics of polymers used in the presence of an oxygen enriched environment. Very few systems can be built which contain no polymeric materials; therefore, materials which have good impact resistance, low heat of combustion, high auto-ignition temperature and that maintain good mechanical properties are essential. The scientists and engineers at the Materials Combustion Research Facility, in cooperation with seal suppliers, are currently testing a new formulation of polytetrafluoroethylene (PTFE) with Brass filler. This Brass-filled PTFE is showing great promise as a seal and seat material for high pressure oxygen systems. Early research has demonstrated very encouraging results, which could rank this material as one of the best fluorinated polymers ever tested. This paper will compare the data obtained for Brass-filled PTFE with other fluorinated polymers, such as TFE-Teflon (PTFE) , Kel-F 81, Viton A, Viton A-500, Fluorel , and Algoflon . A similar metal filled fluorinated polymer, Salox-M , was tested in comparison to Brass-filled PTFE to demonstrate the importance of the metal chosen and relative percentage of filler. General conclusions on the oxygen compatibility of this formulation are drawn, with an emphasis on comparing and contrasting the materials performance to the performance of the current state-of-the-art oxygen compatible polymers.
    Keywords: Man/System Technology and Life Support
    Type: M09-0199 , 12th International Symposium on Flammability and Sensitivity on Materital in Oxygen Enriched Atmospheres; Oct 07, 2009 - Oct 09, 2009; Berlin; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: In the past, the orbital debris environment was modeled as consisting entirely of aluminum particles. As a consequence, most of the impact test database on spacecraft micro-meteoroid and orbital debris (MMOD) shields, and the resulting ballistic limit equations used to predict shielding performance, has been based on using aluminum projectiles. Recently, data has been collected from returned spacecraft materials and other sources that indicate higher and lower density components of orbital debris also exist. New orbital debris environment models such as ORDEM2008 provide predictions of the fraction of orbital debris in various density bins (high = 7.9 g/cu cm, medium = 2.8 g/cu cm, and low = 0.9-1.1 g/cu cm). This paper describes impact tests to assess the effects of projectile density on the performance capabilities of typical MMOD shields. Updates to shield ballistic limit equations are provided based on results of tests and analysis.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-18674 , 11th Hypervelocity Impact Symposium; Apr 11, 2010 - Apr 15, 2010; Freiburg; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Whipple shields were first proposed as a means of protecting spacecraft from the impact of micrometeoroids in 1947 [1] and are currently in use as micrometeoroid and orbital debris shields on modern spacecraft. In the intervening years, the function of the thin bumper used to shatter or melt threatening particles has been augmented and enhanced by the use of various types and configurations of intermediate layers of various materials. All shield designs serve to minimize the threat of a spall failure or perforation of the main wall of the spacecraft as a result of the impact of the fragments. With increasing use of Whipple shields, various ballistic limit equations (BLEs) for guiding the design and estimating the performance of shield systems have been developed. Perhaps the best known and most used are the "new" modified Cour-Palais (Christiansen) equations [2]. These equations address the three phases of impact: (1) ballistic (〈3 km/s), where the projectile is moving too slowly to fragment and essentially penetrates as an intact projectile; (2) shatter (3 to 7 km/s), where the projectile fragments at impact and forms an expanding cloud of debris fragments; and (3) melt/vaporization (〉7 km/s), where the projectile melts or vaporizes at impact. The performance of Whipple shields and the adequacy of the BLEs have been examined for the first two phases using the results of impact tests obtained from two-stage, light-gas gun test firings. Shield performance and the adequacy of the BLEs has not been evaluated in the melt/vaporization phase until now because of the limitations of launchers used to accelerate projectiles with controlled properties to velocities above 7.5 km/s. A three-stage, light-gas gun, developed at the University of Dayton Research Institute (UDRI) [3], is capable of launching small, aluminum spheres to velocities above 9 km/s. This launcher was used to evaluate the ballistic performance of two Whipple shield systems, various thermal protection system materials, and other spacecraft-related materials to the impact of 1.6-mm- to 2.6-mm-diameter, 2017-T4 aluminum spheres at impact velocities ranging from 8.91 km/s to 9.28 km/s. Test results, details of the shield systems, and nominal ballistic limits for the two Whipple shields are shown in Figures 1 and 2.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-18485 , Hypervelocity Impact Symposium 2010; Apr 11, 2010 - Apr 15, 2010; Freiburg; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-14
    Description: In this new era of space exploration, a host of launch vehicles are being examined for possible use in transporting cargo and crew to low Earth orbit and beyond. Launch vehicles derived from the Space Shuttle Program (SSP), known as Shuttle Derived Vehicles (SDVs), are prime candidates for heavy-lift duty because of their potential to minimize non-recurring costs and because the Shuttle can leverage off proven high-performance flight systems with established ground and flight support. To determine the merits of SDVs, a detailed evaluation was performed. This evaluation included a trade study and risk assessment of options based on performance, safety reliability, cost, operations, and evolution. The purpose of this paper is to explain the approach, processes, and tools used to evaluate launch vehicles for heavy lift cargo transportation. The process included defining the trade space, characterizing the concepts, analyzing the systems, and scoring the options. The process also included a review by subject experts from NASA and industry to compare past and recent study data and assess the risks. A set of technical performance measures (TPMs) was generated based on the study requirements and constraints. Tools such as INTROS and POST were used to calculate performance, FIRST was used for prediction of reliability, and other software packages, both commercial and NASA-owned, were applied to study the trade space. By following a clear process and using the right tools a thorough assessment was performed. An SDV can be classified as either a side-mount vehicle (SMV) or an in-line vehicle OLV). An SMV is a Space Shuttle where the Orbiter is replaced by a cargo carrier. An ILV is comprised of a modified Shuttle External Tank (ET) with engines mounted to the bottom and cargo mounted atop. For both families of vehicles, Solid Rocket Boosters (SRBs) are attached to the ET. The first derivate of Shuttle is defined as the vehicle with minimum changes necessary to transform the Space Shuttle into an SDV. Deltas from the first derivate were also formulated to study more SDV options. Examples of deltas include replacing the SRBs with larger and/or more SRBs, adding an upper stage, increasing the size of the ET, changing the engines, and modifying the elements. Challenges for SDV range from tailoring infrastructure to meeting the exploration schedule. Although SDV is based on the Space Shuttle, it still includes development risk for designing and building a Cargo Carrier. There are also performance challenges in that Shuttle is not optimized for cargo-only missions, but it is a robust system built on reusability. Balancing the strengths and weaknesses of the Shuttle to meet Lunar and Mars mission objectives provides the framework for an informative trade study. SDV was carefully analyzed and the results of the study provide invaluable data for use in the new exploration initiative.
    Keywords: Space Sciences (General)
    Type: AIAA 1st Exploration Conference; Jan 30, 2005 - Feb 01, 2005; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-12
    Description: High-test hydrogen peroxide (HP) is an energetic liquid with widespread use in a variety of industrial and aerospace applications. In recent years, there has been increased interest in its use as a "green" or environmentally benign propellant in spacecraft and defense propulsion and power systems. HP, however, can be a significant hazard if not properly handled. In addition, hydrogen peroxide is unstable when exposed to trace contaminants, which may catalyze decomposition and result in violent thermal runaway. Many advanced and newly developed alloys, polymers, composites and other construction materials (such as those used in tankage and piping systems) have not been tested for compatibility with hydrogen peroxide. The reliability of extrapolating from short-term compatibility test results to long-term compatibility has not yet been fully assessed. Therefore, the users and designers of HP systems must be aware of these hazards and unknowns and take the appropriate precautions.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NASA/TM-2004-213151 , S-936 , JSC-CN-8960 , JSC-E-DAA-TN63718
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...