ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (23)
  • Articles (OceanRep)  (23)
  • 2005-2009  (17)
  • 2000-2004  (6)
  • 1
    Publication Date: 2017-01-04
    Description: Tropical South America is one of the three main centres of the global, zonal overturning circulation of the equatorial atmosphere (generally termed the 'Walker' circulation1). Although this area plays a key role in global climate cycles, little is known about South American climate history. Here we describe sediment cores and down-hole logging results of deep drilling in the Salar de Uyuni, on the Bolivian Altiplano, located in the tropical Andes. We demonstrate that during the past 50,000 years the Altiplano underwent important changes in effective moisture at both orbital (20,000-year) and millennial timescales. Long-duration wet periods, such as the Last Glacial Maximum—marked in the drill core by continuous deposition of lacustrine sediments—appear to have occurred in phase with summer insolation maxima produced by the Earth's precessional cycle. Short-duration, millennial events correlate well with North Atlantic cold events, including Heinrich events 1 and 2, as well as the Younger Dryas episode. At both millennial and orbital timescales, cold sea surface temperatures in the high-latitude North Atlantic were coeval with wet conditions in tropical South America, suggesting a common forcing.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-01-04
    Description: Long sediment cores recovered from the deep portions of Lake Titicaca are used to reconstruct the precipitation history of tropical South America for the past 25,000 years. Lake Titicaca was a deep, fresh, and continuously overflowing lake during the last glacial stage, from before 25,000 to 15,000 calibrated years before the present (cal yr B.P.), signifying that during the last glacial maximum (LGM), the Altiplano of Bolivia and Peru and much of the Amazon basin were wetter than today. The LGM in this part of the Andes is dated at 21,000 cal yr B.P., approximately coincident with the global LGM. Maximum aridity and lowest lake level occurred in the early and middle Holocene (8000 to 5500 cal yr B.P.) during a time of low summer insolation. Today, rising levels of Lake Titicaca and wet conditions in Amazonia are correlated with anomalously cold sea-surface temperatures in the northern equatorial Atlantic. Likewise, during the deglacial and Holocene periods, there were several millennial-scale wet phases on the Altiplano and in Amazonia that coincided with anomalously cold periods in the equatorial and high-latitude North Atlantic, such as the Younger Dryas.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-07-06
    Description: A joint SAMS / NOCS cruise led by the Scottish Association for Marine Science
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  [Other] In: Goldschmidt Conference 2005, 21.-25.05.2005, Moscow, Idaho, USA .
    Publication Date: 2012-02-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-06-28
    Description: Dissolved methane and high resolution bathymetry surveys were conducted over the Rock Garden region of Ritchie Ridge, along the Hikurangi margin, eastern New Zealand. Multibeam bathymetry reveals two prominent, northeast trending ridges, parallel to subduction along the margin, that are steep sided and extensively slumped. Elevated concentrations of methane (up to 10 nM, 10× background) within the water column are associated with a slump structure at the southern end of Eastern Rock Garden. The anomalous methane concentrations were detected by a methane sensor (METS) attached to a conductivity‐temperature‐depth‐optical backscatter device (CTDO) and are associated with elevated light scattering and flare‐shaped backscatter signals revealed by the ship's echo sounder. Increased particulate matter in the water column, possibly related to the seepage and/or higher rates of erosion near slump structures, is considered to be the cause of the increased light scattering, rather than bubbles in the water column. Methane concentrations calculated from the METS are in good agreement with concentrations measured by gas chromatography in water samples collected at the same time. However, there is a c. 20 min (c. 900 m) delay in the METS signal reaching maximum CH4 concentrations. The maximum methane concentration occurs near the plateau of Eastern Rock Garden close to the edge of a slump, at 610 m below sea level (mbsl). This is close to the depth (c. 630 mbsl) where a bottom simulating reflector (BSR) pinches out at the seafloor. Fluctuating water temperatures observed in previous studies indicate that the stability zone for pure methane hydrate in the ocean varies between 630 and 710 mbsl. However, based on calculations of the geothermal gradients from BSRs, we suggest gas hydrate in the study area to be more stable than hydrate from pure methane in sea water, moving the phase boundary in the ocean upward. Small fractions of additional higher order hydrocarbon gases are the most likely cause for increased hydrate stability. Relatively high methane concentrations have been measured down to c. 1000 mbsl, most likely in response to sediment slumping caused by gas hydrate destabilisation of the sediments and/or marking seepage through the gas hydrate zone.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Eos, Transactions American Geophysical Union, 86 (22). pp. 209-212.
    Publication Date: 2017-02-17
    Description: The process of plate accretion at mid-ocean ridges, once thought to occur in a relatively simple, magmatic system, has been shown in recent years to possess unexpected layers of complexity [e.g., Cannat, 1996; Escartín and Lin, 1998; Jokat et al., 2003; Michael et al., 2003]. Particularly at lower spreading rates, the magma supply to some or all of the ridge decreases, with the plate spreading motion being taken up instead on faults. The balance between these magmatic and tectonic processes governs such features as the topography, seismic activity location of hydrothermal vents, and degree of chemical exchange between crust and ocean at spreading axes. It therefore has important implications for the hydrothermal marine biosphere and global chemical budgets.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-11-01
    Description: Atmospheric deposition fluxes of soluble nutrients (N, P, Si, Fe, Co, Zn) to the tropical North Atlantic were determined during cruise M55 of the German SOLAS programme. Nutrient fluxes were highest in the east of the section along 10°N, owing to the proximity of source regions in West Africa and Europe, and lowest in the west, for both dry and wet deposition modes. In common with other recent studies, atmospheric P and Si inputs during M55 were strongly depleted relative to the stoichiometry of phytoplankton Fe, N, P and Si requirements. Atmospheric N inputs were equivalent to 0.1–4.7% of observed primary productivity during the cruise. Atmospheric nutrient supply was also compared to observed nitrogen fixation rates during M55. While atmospheric Fe supply may have been sufficient to support N fixation (depending on the relationship between our simple Fe leaching experiment and aerosol Fe dissolution in seawater), atmospheric P supply was well below the required rate. The stable nitrogen isotope composition of nitrate–N in aerosol and rain was also determined. Results of a simple model indicate that atmospheric deposition and nitrogen fixation introduce similar amounts of isotopically light nitrogen into surface waters of the study region. This implies that nitrogen isotope-based methods would overestimate nitrogen fixation here by a factor of 2, if atmospheric inputs were not taken into account.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-09-08
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-09-23
    Description: The shift of lava geochemistry between volcanic front to rear-arc volcanoes in active subduction zones is a widespread phenomenon. It is somehow linked to an increase of the slab surface depth of the subducting oceanic lithosphere and increasing thickness of the mantle wedge and new constraints for its causes may improve our understanding of magma generation and element recycling in subduction zones in general. As a case study, this paper focuses on the geochemical composition of lavas from two adjacent volcanic centres from the volcanic front (VF) to rear-arc (RA) transition of the Southern Kamchatkan subduction zone, with the aim to examine whether the shift in lava geochemistry is associated with processes in the mantle wedge or in the subducted oceanic lithosphere or both. The trace element and O–Sr–Nd–Hf–Pb (double-spike)-isotopic composition of the mafic Mutnovsky (VF) and Gorely (RA) lavas in conjunction with geochemical modelling provides constraints for the degree of partial melting in the mantle wedge and the nature of their slab components. Degrees of partial melting are inferred to be significantly higher beneath Mutnovsky (∼18%) than Gorely (∼10%). The Mutnovsky (VF) slab component is dominated by hydrous fluids, derived from subducted sediments and altered oceanic crust, eventually containing minor but variable amounts of sediment melts. The composition of the Gorely slab component strongly points to a hydrous silicate melt, most likely mainly stemming from subducted sediments, although additional fluid-contribution from the underlying altered oceanic crust (AOC) is likely. Moreover, the Hf–Nd-isotope data combined with geochemical modelling suggest progressive break-down of accessory zircon in the melting metasediments. Therefore, the drastic VF to RA shift in basalt chemistry mainly arises from the transition of the nature of the slab component (from hydrous fluid to melt) in conjunction with decreasing degrees of partial melting within ∼15 km across-arc. Finally, systematic variations of key inter-element with high-precision Pb-isotope ratios provide geochemical evidence for a pollution of the Mutnovsky mantle source with Gorely melt components but not vice versa, most likely resulting from trench-ward mantle wedge corner flow. We also present a geodynamic model integrating the location of the Mutnovsky and Gorely volcanic centres and their lava geochemistry with the recently proposed thermal structure of the southern Kamchatkan arc and constraints about phase equilibria in subducted sediments and AOC. Herein, the slab surface hosting the subducted sediments suffers a transition from dehydration to melting above a continuously dehydrating layer of AOC. Wider implications of this study are that an onset of (flush-) sediment melting may ultimately be the main trigger for the VF to RA transition of lava geochemistry in subduction zones.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 31 (23). L23S04.
    Publication Date: 2019-09-23
    Description: H2O2 was measured in the upper water column (0–200 m) along a west-east transect through the Equatorial Atlantic as part of the German SOLAS (Surface Ocean Lower Atmosphere) cruise Meteor 55 (M55). Vertical profiles of H2O2 showed characteristic exponential decay consistent with light profiles and rainwater inputs. Integrated (0–100 m) water column H2O2 inventories ranged from 1.1–8.9 mmol m−2 with the highest values in the Amazon Plume. H2O2 inventories were also higher at the Equatorial Upwelling and after heavy rain showers in the region of the Inter Tropical Convergence Zone (ITCZ). Analysis of rain water samples collected during the cruise gave a volume weighted mean of 10.8 μmol L−1 (range 1.5–22.3 μmol L−1). This work highlights the importance of rainwater as a major source for H2O2 in the surface waters under the ITCZ.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...