ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (561)
  • Open Access-Papers  (561)
  • Elsevier  (325)
  • Iranian Fisheries Science Research Institute  (121)
  • Woods Hole Oceanographic Institution  (112)
  • American Association for the Advancement of Science (AAAS)
Collection
  • Articles  (561)
Years
  • 1
    Publication Date: 2014-05-26
    Description: We provide an assessment of sea level simulated in a suite of global ocean-sea ice models using the interannual CORE atmospheric state to determine surface ocean boundary buoyancy and momentum fluxes. These CORE-II simulations are compared amongst themselves as well as to observation-based estimates. We focus on the final 15 years of the simulations (1993–2007), as this is a period where the CORE-II atmospheric state is well sampled, and it allows us to compare sea level related fields to both satellite and in situ analyses. The ensemble mean of the CORE-II simulations broadly agree with various global and regional observation-based analyses during this period, though with the global mean thermosteric sea level rise biased low relative to observation-based analyses. The simulations reveal a positive trend in dynamic sea level in the west Pacific and negative trend in the east, with this trend arising from wind shifts and regional changes in upper 700 m ocean heat content. The models also exhibit a thermosteric sea level rise in the subpolar North Atlantic associated with a transition around 1995/1996 of the North Atlantic Oscillation to its negative phase, and the advection of warm subtropical waters into the subpolar gyre. Sea level trends are predominantly associated with steric trends, with thermosteric effects generally far larger than halosteric effects, except in the Arctic and North Atlantic. There is a general anti-correlation between thermosteric and halosteric effects for much of the World Ocean, associated with density compensated changes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Chu, H., Luo, X., Ouyang, Z., Chan, W. S., Dengel, S., Biraud, S. C., Torn, M. S., Metzger, S., Kumar, J., Arain, M. A., Arkebauer, T. J., Baldocchi, D., Bernacchi, C., Billesbach, D., Black, T. A., Blanken, P. D., Bohrer, G., Bracho, R., Brown, S., Brunsell, N. A., Chen, J., Chen, X., Clark, K., Desai, A. R., Duman, T., Durden, D., Fares, S., Forbrich, I., Gamon, J. A., Gough, C. M., Griffis, T., Helbig, M., Hollinger, D., Humphreys, E., Ikawa, H., Iwata, H., Ju, Y., Knowles, J. F., Knox, S. H., Kobayashi, H., Kolb, T., Law, B., Lee, X., Litvak, M., Liu, H., Munger, J. W., Noormets, A., Novick, K., Oberbauer, S. F., Oechel, W., Oikawa, P., Papuga, S. A., Pendall, E., Prajapati, P., Prueger, J., Quinton, W. L., Richardson, A. D., Russell, E. S., Scott, R. L., Starr, G., Staebler, R., Stoy, P. C., Stuart-Haentjens, E., Sonnentag, O., Sullivan, R. C., Suyker, A., Ueyama, M., Vargas, R., Wood, J. D., & Zona, D. Representativeness of eddy-covariance flux footprints for areas surrounding AmeriFlux sites. Agricultural and Forest Meteorology, 301, (2021): 108350, https://doi.org/10.1016/j.agrformet.2021.108350.
    Description: Large datasets of greenhouse gas and energy surface-atmosphere fluxes measured with the eddy-covariance technique (e.g., FLUXNET2015, AmeriFlux BASE) are widely used to benchmark models and remote-sensing products. This study addresses one of the major challenges facing model-data integration: To what spatial extent do flux measurements taken at individual eddy-covariance sites reflect model- or satellite-based grid cells? We evaluate flux footprints—the temporally dynamic source areas that contribute to measured fluxes—and the representativeness of these footprints for target areas (e.g., within 250–3000 m radii around flux towers) that are often used in flux-data synthesis and modeling studies. We examine the land-cover composition and vegetation characteristics, represented here by the Enhanced Vegetation Index (EVI), in the flux footprints and target areas across 214 AmeriFlux sites, and evaluate potential biases as a consequence of the footprint-to-target-area mismatch. Monthly 80% footprint climatologies vary across sites and through time ranging four orders of magnitude from 103 to 107 m2 due to the measurement heights, underlying vegetation- and ground-surface characteristics, wind directions, and turbulent state of the atmosphere. Few eddy-covariance sites are located in a truly homogeneous landscape. Thus, the common model-data integration approaches that use a fixed-extent target area across sites introduce biases on the order of 4%–20% for EVI and 6%–20% for the dominant land cover percentage. These biases are site-specific functions of measurement heights, target area extents, and land-surface characteristics. We advocate that flux datasets need to be used with footprint awareness, especially in research and applications that benchmark against models and data products with explicit spatial information. We propose a simple representativeness index based on our evaluations that can be used as a guide to identify site-periods suitable for specific applications and to provide general guidance for data use.
    Description: We thank the AmeriFlux site teams for sharing their data and metadata with the network. Funding for these flux sites is acknowledged in the site data DOI, shown in Table S1. This analysis was supported in part by funding provided to the AmeriFlux Management Project by the U.S. Department of Energy's Office of Science under Contract No. DE-AC02-05CH11231. All footprint climatologies, site-level representativeness indices, and monthly EVI and sensor location biases can be accessed via the Zenodo Data Repository (Datasets S1–S6, http://doi.org/10.5281/zenodo.4015350).
    Keywords: Flux footprint ; Spatial representativeness ; Landsat EVI ; Land cover ; Sensor location bias ; Model-data benchmarking
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: In this paper we introduce a simple procedure to identify clusters of multivariate waveforms based on a simultaneous assignation and alignment procedure. This approach is aimed at the identification of clusters of earthquakes,assuming that similarities between seismic events with respect to hypocentral parameters and focal mechanism correspond to similarities between waveforms of events. Therefore we define a distance measure between seismic curve, in order to interpret and better understand the main features of the generating seismic process.
    Description: Published
    Description: 60-69
    Description: 2.5. Laboratorio per lo sviluppo di sistemi di rilevamento sottomarini
    Description: JCR Journal
    Description: reserved
    Keywords: Waveforms clustering, multiplets, Ocean Bottom Seismometer ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: CoOP (Coastal Ocean Processes) is an organization meant to study major interdisciplinary scientific problems in the coastal ocean. Its goal is "to obtain a new level of quantitative understanding of the processes that dominate the transformations, transport and fates of biologically, chemically and geologically important matter on the continental margin". Central to obtaining this understanding will be advances in observing and modeling the cross-shelf component of transport. More specific objectives are to understand 1) cross-margin exchanges, 2) air sea exchanges, 3) benthic-pelagic exchanges, 4) terrestrial inputs and 5) biological and chemical transformations within the water column. CoOP research will be carried out primarly through a series of process-oriented field studies, each involving about two years of measurements. Each of these field studies is to be initiated and defined through a community workshop. In addition to the process studies, CoOP will also involve modeling, long time series, exploratory studies, remote sensing, technological innovation, data archiving and communications. A CoOP pilot study has been approved for funding by the National Science Foundation, and funding will begin in 1992. The CoOP science effort is thus already underway.
    Description: Funding was provided by the National Science Foundation under Grant No. OCE-9108993.
    Keywords: Coastal oceanography ; Coastal meteorology ; Continental shelf
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: 9125740 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ocean Modelling 121 (2018): 49-75, doi:10.1016/j.ocemod.2017.11.008.
    Description: Lagrangian analysis is a powerful way to analyse the output of ocean circulation models and other ocean velocity data such as from altimetry. In the Lagrangian approach, large sets of virtual particles are integrated within the three-dimensional, time-evolving velocity fields. Over several decades, a variety of tools and methods for this purpose have emerged. Here, we review the state of the art in the field of Lagrangian analysis of ocean velocity data, starting from a fundamental kinematic framework and with a focus on large-scale open ocean applications. Beyond the use of explicit velocity fields, we consider the influence of unresolved physics and dynamics on particle trajectories. We comprehensively list and discuss the tools currently available for tracking virtual particles. We then showcase some of the innovative applications of trajectory data, and conclude with some open questions and an outlook. The overall goal of this review paper is to reconcile some of the different techniques and methods in Lagrangian ocean analysis, while recognising the rich diversity of codes that have and continue to emerge, and the challenges of the coming age of petascale computing.
    Description: EvS has received funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (grant agreement No 715386). This research for PJW was supported as part of the Energy Exascale Earth System Model (E3SM) project, funded by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research. Funding for HFD was provided by Grant No. DE-SC0012457 from the US Department of Energy. PB acknowledges support for this work from NERC grant NE/R011567/1. SFG is supported by NERC National Capability funding through the Extended Ellett Line Programme.
    Keywords: Ocean circulation ; Lagrangian analysis ; Connectivity ; Particle tracking ; Future modelling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: A Coastal Ocean Dynamics Experiment (CODE) has been undertaken to identify and study the important dynamical processes which govern the wind-driven motion of coastal water over the continental shelf. The initial effort in this four-year research program is to obtain high-quality data sets of all the relevant physical variables needed to construct accurate kinematic and dynamic descriptions of the response of shelf water to strong wind forcing in the 2 to 10-day band. A series of two small-scale, densely-instrumented field experiments of four-month duration (CODE-1 and CODE-2) is designed to explore and to determine the kinematics and momentum and heat balances of the local wind-driven flow over a region of the northern California shelf which is characterized by both relatively simple bottom topography and large wind stress events in both winter and summer. A more lightly-instrumented, long-term, large-scale component has been designed to help separate the local wind-driven response in the region of the small-scale experiments from motions generated either offshore by the California Current system or in some distant region along the coast, and also to help determine the seasonal cycles of the atmospheric forcing, water structure, and coastal currents over the northern California shelf. This report presents an overview of the CODE program and a preliminary description of the observational programs conducted during CODE-1. The various logical components of CODE are identified and described, and their relationship to the entire effort is discussed. The report itself represents a minor revision of the original cover proposal submitted to NSF in late 1979 by the principal investigators and is not a comprehensive guide nor does it contain any descriptions of the initial results from CODE-1. Scientific and engineering results will be presented elsewhere in individual technical and scientific reports. CODE has been jointly conceived by the following principal investigators (who collectively make up the CODE group): J. Allen , R. Beardsley, W. Brown, 0. Cacchione, R. Davis, D. Drake , C. Friehe, W. Grant, A. Huyer, J. Irish, M. Janopaul, A. Williams and C. Winant.
    Keywords: Hydrographic surveying ; Continental shelf
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-01-22
    Description: The recently selected missions to Venus have opened a new era for the exploration of this planet. These missions will provide information about the chemistry of the atmosphere, the geomorphology, local-to-regional surface composition, and the rheology of the interior. One key scientific question to be addressed by these future missions is whether Venus remains volcanically active, and if so, how its volcanism is currently evolving. Hence, it is fundamental to analyze appropriate terrestrial analog sites for the study of possibly active volcanism on Venus. To this regard, we propose Mount Etna - one of the most active and monitored volcanoes on Earth - as a suitable terrestrial laboratory for remote and in-situ investigations to be performed by future missions to Venus. Being characterized by both effusive and explosive volcanic products, Mount Etna offers the opportunity to analyze multiple eruptive styles, both monitoring active volcanism and identifying the possible occurrence of pyroclastic activity on Venus. We directly compare Mount Etna with Idunn Mons, one of the most promising potentially active volcanoes of Venus. Despite the two structures show a different topography, they also show some interesting points of comparison, and in particular: a) comparable morpho-structural setting, since both volcanoes interact with a rift zone, and b) morphologically similar volcanic fields around both Mount Etna and Idunn Mons. Given its ease of access, we also propose Mount Etna as an analog site for laboratory spectroscopic studies to identify the signatures of unaltered volcanic deposits on Venus.
    Description: Published
    Description: 115959
    Description: OSV2: Complessità dei processi vulcanici: approcci multidisciplinari e multiparametrici
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-10-29
    Description: We present new viscosity measurements for melts spanning a wide range of anhydrous compositions including: rhyolite, trachyte, moldavite, andesite, latite, pantellerite, basalt and basanite. Micropenetration and concentric cylinder viscometry measurements cover a viscosity range of 10−1 to 1012 Pas and a temperature range from 700 to 1650 °C. These new measurements, combined with other published data, provide a high-quality database comprising ∼800 experimental data on 44 well-characterized melt compositions. This database is used to recalibrate the model proposed by Giordano and Dingwell [Giordano, D., Dingwell, D. B., 2003a. Non-Arrhenian multicomponent melt viscosity: a model. Earth Planet. Sci. Lett. 208, 337–349] for predicting the viscosity of natural silicate melts. The present contribution clearly shows that: (1) the viscosity (η)–temperature relationship of natural silicate liquids is very well represented by the VFT equation [log η=A+B/ (T−C)] over the full range of viscosity considered here, (2) the use of a constant high-T limiting value of melt viscosity (e.g., A) is fully consistent with the experimental data, (3) there are 3 different compositional suites (peralkaline, metaluminous and peraluminous) that exhibit different patterns in viscosity, (4) the viscosity of metaluminous liquids is well described by a simple mathematical expression involving the compositional parameter (SM) but the compositional dependence of viscosity for peralkaline and peraluminous melts is not fully controlled by SM. For these extreme compositions we refitted the model using a temperature-dependent parameter based on the excess of alkalies relative to alumina (e.g., AE/SM). The recalibrated model reproduces the entire database to within 5% relative error (e.g., RMSE of 0.45 logunits).
    Description: Published
    Description: 42–56
    Description: reserved
    Keywords: Viscosity ; Model ; Silicate melts ; Metaluminous ; Peraluminous ; Peralkaline ; 04. Solid Earth::04.01. Earth Interior::04.01.05. Rheology ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 717294 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-05-12
    Description: The Neapolitan volcanic area (Southern Italy), which includes the Phlegrean Volcanic District and the Somma– Vesuvius complex, has been the site of intense Plio-Quaternary magmatic activity and has produced volcanic rocks with a subduction-related geochemical and isotopic signature. High-Mg, K-basaltic lithic lava fragments dispersed within hydromagmatic tuff of the Solchiaro eruption (Procida Island) provide constraints on the nature and role of both the mantle source prior to enrichment and the subduction-related components. The geochemical data (Nb/Yb, Nb/Y, Zr/Hf) indicate a pre-enrichment source similar to that of enriched MORB mantle. In order to constrain the characteristics of subducted slab-derived components added to this mantle sector, new geochemical and Sr–Nd-isotopic data have been acquired on meta-sediments and pillow lavas from Timpa delle Murge ophiolites. These represent fragments of Tethyan oceanic crust (basalts and sediments) obducted during the Apennine orogeny, and may be similar to sediments subducted during the closure of the Tethys Ocean. Based on trace element compositions (e.g., Th/Nd, Nb/Th, Yb/Th and Ba/Th) and Nd-isotopic ratio, we hypothesize the addition of several distinct subducted slab-derived components to the mantle wedge: partial melts from shales and limestones, and aqueous fluids from shales, but the most important contribution is provided by melts from pelitic sediments. Also, trace elements and Sr–Nd-isotopic ratios seem to rule out a significant role for altered oceanic crust. Modeling based on variations of trace elements and isotopic ratios indicates that the pre-subduction mantle source of the Phlegrean Volcanic District and Somma–Vesuvius was enriched by 2–4% of subducted slab-derived components. This enrichment event might have stabilized amphibole and/or phlogopite in the mantle source. 6% degree of partial melting of a phlogopite-bearing enriched source, occurring initially in the garnet stability field and then in the spinel stability field can generate a melt with trace elements and Sr– Nd-isotopic features matching those of high-Mg, K-basalts of Procida Island. Furthermore, 2% partial melting of the same enriched source can reproduce the trace elements and isotopic features of the most primitive magmas of Somma–Vesuvius, subsequently modified by assimilation of continental crust during fractional crystallization processes at mid-lower depth. Combined trace element and Sr–Nd isotope modeling constrains the age of the enrichment event to 45 Ma ago, suggesting that the Plio-Quaternary magmatism of the Neapolitan area is postorogenic, and related to the subduction of oceanic crust belonging to the Tethys Ocean
    Description: Published
    Description: 165-183
    Description: 2T. Deformazione crostale attiva
    Description: 3T. Sorgente sismica
    Description: 4T. Sismicità dell'Italia
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: Neapolitan volcanic area ; Phlegrean Volcanic District ; Somma–Vesuvius complex ; Basilicata ophiolites
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-10-29
    Description: We have performed a parametric study on the dynamics of trachytic (alkaline) versus rhyolitic (calc-alkaline) eruptions by employing a steady, isothermal, multiphase non-equilibrium model of conduit flow and fragmentation. The employed compositions correspond to a typical rhyolite and to trachytic liquids from Phlegrean Fields eruptions, for which detailed viscosity measurements have been performed. The investigated conditions include conduit diameters in the range 30–90 m and total water contents from 2 to 6 wt%, corresponding to mass flow rates in the range 106–108 kg/s. The numerical results show that rhyolites fragment deep in the conduit and at a gas volume fraction ranging from 0.64 to 0.76, while for trachytes fragmentation is found to occur at much shallower levels and higher vesicularities (0.81–0.85). An unexpected result is that low-viscosity trachytes can be associated with lower mass flow rates with respect to more viscous rhyolites. This is due to the non-linear combined effects of viscosity and water solubility affecting the whole eruption dynamics. The lower viscosity of trachytes, together with higher water solubility, results in delayed fragmentation, or in a longer bubbly flow region within the conduit where viscous forces are dominant. Therefore, the total dissipation due to viscous forces can be higher for the less viscous trachytic magma, depending on the specific conditions and trachytic composition employed. The fragmentation conditions determined through the simulations agree with measured vesicularities in natural pumice clasts of both magma compositions. In fact, vesicularities average 0.80 in pumice from alkaline eruptions at Phlegrean Fields, while they tend to be lower in most calc-alkaline pumices. The results of numerical simulations suggest that higher vesicularities in alkaline products are related to delayed fragmentation of magmas with this composition. Despite large differences in the distribution of flow variables which occur in the deep conduit region and at fragmentation, the flow dynamics of rhyolites and trachytes in the upper conduit and at the vent can be very similar, at equal conduit size and total water content. This is consistent with similar phenomenologies of eruptions associated with the two magma types.
    Description: Published
    Description: 93-108
    Description: partially_open
    Keywords: trachytic magma ; conduit flow ; eruption dynamics and numerical simulations ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 520 bytes
    Format: 455753 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...