ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (12)
  • Other Sources
  • Open Access-Papers  (12)
  • 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations  (12)
  • 2010-2014  (12)
  • 2012  (12)
Collection
  • Articles  (12)
  • Other Sources
Source
  • Open Access-Papers  (12)
Years
  • 2010-2014  (12)
Year
  • 1
    Publication Date: 2017-04-04
    Description: On May 20th and 29th, 2012, two earthquakes having magnitude 5.9 and 5.8, respectively, and their aftershocks sequence hit the central Po Plain (Italy), about 40 km north of Bologna, in the northern Apennines. Following the main-shocks, more than 2,000 events were recorded by the INGV National Seismic Network (http://iside.rm.ingv.it/). During the seismic sequence, a pure compressional faulting was generated by the activation of blind thrusts of the western Ferrara Arc, thereby activating a 50 km-long stretch of this buried outer front of the northern Apennines. The focal mechanisms of the larger shocks agree with the compilation of present-day tectonic stress indicators, showing a ca. N-S oriented maximum horizontal stress in the area, i.e. oriented perpendicular to the main structural trends. Most of the seismic sequence was confined between 1 and 12 km depth, above the local basal detachment of the outer thrust front of the northern Apennines. The surface displacement pattern, associated with the mainshocks and some following minor events (some of which above M 5.0), has been measured by applying Interferometric Synthetic Aperture Radar (InSAR) technique to a pair of C-Band Radarsat-1 data. The coseismic movements detected overall the epicentral region have been here used as input information for the source inversion model.
    Description: Published
    Description: 789-795
    Description: 1.10. TTC - Telerilevamento
    Description: JCR Journal
    Description: restricted
    Keywords: SAR interferometry ; Deformation ; Emlilia seismic sequence ; Source modeling ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-24
    Description: Il 28 dicembre 1908 lo Stretto di Messina veniva colpito da un disastroso evento sismico di ms=7.5. L'evento è il più forte tra i terremoti italiani degli utimi 100 anni.
    Description: Published
    Description: 3-14
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: N/A or not JCR
    Description: restricted
    Keywords: GPS, Crustal Deformations, Messina Straits ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: We have investigated the possible cause-and-effect relationship due to stress transfer between two earthquakes that occurred near Christchurch, New Zealand, in September 2010 and in February 2011. The Mw 7.1 Darfield (Canterbury) event took place along a previously unrecognized fault. The Mw 6.3 Christchurch earthquake, generated by a thrust fault, occurred approximately five months later, 6 km south-east of Christchurch’s city center. We have first measured the surface displacement field to retrieve the geometries of the two seismic sources and the slip distribution. In order to assess whether the first earthquake increased the likelihood of occurrence of a second earthquake, we compute the Coulomb Failure Function (CFF). We find that the maximum CFF increase over the second fault plane is reached exactly around the hypocenter of the second earthquake. In this respect, we may conclude that the Darfield earthquake contributed to promote the rupture of the Christchurch fault.
    Description: Published
    Description: Article number:98
    Description: 1.10. TTC - Telerilevamento
    Description: N/A or not JCR
    Description: reserved
    Keywords: DInSAR ; Coulomb Failure ; Christchurch earthquake ; surface deformation ; seismi source modelling ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: InSAR (Interferometric Synthetic Aperture Radar) techniques are applied to investigate last two decades of surface deformation of the Cerro Blanco/Robledo Caldera (CBRC). The objective is the identification of deforming patterns that alter the shape of these complex structures when they show low or null activity. The joint analysis between results by using different methods over a long time span, represents a unique opportunity to improve knowledge of volcanic structures located in remote area and, for this, poorly or not monitored. In this work we identify displacement patterns over the volcanic area, by using both classical differential InSAR analysis, and A-InSAR (Advanced InSAR) analysis based on SAR data acquired by ERS-1/2 and ENVISAT sensors during the 1996-2010 time interval. The satellite-derived information allows us to characterize the deformation pattern that affected the CBRC and shows that the actively deforming CBRC is subsiding in the observed period. In order to figure out the deformation history of CBRC, we analyzed the four sub-periods 1992-1996, 1996-2000, and 2005-2010 by using standard differential InSAR technique, and the interval 2003-2007 by adopting an A-InSAR technique. Subsidence velocities of the CBRC caldera are about 2.6 cm/yr in the time interval 1992-1996 (measured with ERS descending data), 1.8 cm/yr in 1996-2000 (ERS descending data), 1.2 cm/yr in 2003-2007 (ENVISAT descending data),and finally, 0.87 cm/yr in 2005-2010 (ENVISAT ascending data). Moreover, outside the caldera and in particular in the NW area, we observe the presence of positive velocity values. Results show that: a) a decreasing subsidence rate might be related to the reduction of volcanic activity in correspondence of the CBRC; b) positive velocity signal, decreasing with time, might be interpreted as follows: - evidence of volcano structure lateral spreading, according to the velocity pattern distribution in this area and to the relative local flanks topographic convexity of the volcano structure; - uplift signal of this sector of mountain chain; - combination if the two mechanisms above.
    Description: Published
    Description: 279–287
    Description: 1.10. TTC - Telerilevamento
    Description: JCR Journal
    Description: open
    Keywords: : InSAR; A-InSAR; Deflation; Calderas; Volcanic structures ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.09. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-01-27
    Description: The brittle-ductile transition (BDT) separates the lower crust where deformation occurs in steady-state regime, from the upper crust where it is rather dominated by stick-slip. The fault hangingwall above BDT accumulates elastic energy during the interseismic period, without significant evidence of surface strain rate Faults activate in areas of high strain rate gradients along the segments with lower strain rates Fluid discharge varies as a function of the tectonic setting The phenomenology gives insights for the parameters to be monitored in earthquake forecasting
    Description: Italian Presidenza del Consiglio dei Ministri - Dipartimento della Protezione Civile (DPC) within the INGV-DPC 2007-2009 agreement(project S1), Sapienza University and CNR-Eurocores-TopoEurope.
    Description: Unpublished
    Description: Brisbane Australia
    Description: 3.2. Tettonica attiva
    Description: open
    Keywords: brittle-ductile transition ; L' Aquila 2009 earthquake ; Emilia 2012 earthquake ; geodetic strain rate ; fault activation ; magnitude ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-03
    Description: The project S1 was aimed at (a) collecting new data and to update the existing databases needed to quantify seismic hazard; (b) promoting new studies on specific fields of knowledge and less-explored areas of Italy; (c) testing new approaches to evaluate seismic potential; (d) bounding slip rate values to use within probabilistic hazard estimates; and (e) preparing the way towards a future seismic hazard map of Italy. It was designed with three scientific parts – nationwide basic data, rheology, and field studies – and implemented into four tasks: 1) earthquake geodesy and modeling, 2) seismological data and earthquake statistics, 3) earthquake geology, and 4) tsunamis. Although with many difficulties and some delay, described in the appropriate section, all the above objectives have generally been accomplished. New observations were collected through original fieldwork and more sophisticated analyses were performed on existing data. Datasets needed for the seismic hazard estimates were updated at various levels by reducing both epistemic and aleatory uncertainties. New studies were carried out on specific fields of knowledge, e.g. addressing the repeatability of geodetic and stress data measurements or the seismogenic behavior of misoriented faults. Studies on less-explored areas were stimulated, and faults, whose seismic potential was not previously accounted for, were mapped and/or parameterized in the Ionian and Adriatic Seas, in Calabria, Sicily and the Southwestern Alps. Independent approaches to evaluate the seismic potential were tested, and a large effort toward homogenization and verifiability was made. The substantial improvements of nationwide datasets and understanding of the tectonic processes in large areas of the country set the basis for a significantly better assessment of seismic hazard.
    Description: DPC, INGV, CNR
    Description: Unpublished
    Description: 3.1. Fisica dei terremoti
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: open
    Keywords: earthquakes ; seismic hazard ; 03. Hydrosphere::03.02. Hydrology::03.02.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.05. Rheology ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.05. Historical seismology ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: Etna is worldwide known as one of the most studied and monitored active volcanoes. Flank instability along the eastern and southern portion of Mt. Etna has been observed and measured thanks to geodetic networks and InSAR data analysis. The spreading area is bordered to the north by the east-west Pernicana Fault System (PFS) which dynamic is often linked with the eruptive activity, as recently observed during the 2002-2003 eruption. A seismic sequence occurred since April 2-3, 2010, along the PFS with two very shallow (a few hundred meters) mainshocks of magnitude 3.6 and 3.5. Explosions and ash emissions at the summit craters followed this swarm and culminated some days later (April 7-8). Just after the earthquake, specific GPS surveys were carried out aimed at monitoring the eastern part of the Pernicana fault, and the leveling route on the northeastern flank of the volcano was also surveyed. Trying to investigate the deformation occurred along the PFS during the events of April 3rd 2010, we performed a DInSAR (Differential Interferometric Synthetic Aperture Radar) analysis of ascending and descending Envisat, and of ascending ALOS-PALSAR images encompassing the date of the earthquake. The Envisat interferograms show very intense but local deformation on the Envisat ascending data and a low signal for the descending geometry, close to the Pernicana fault trace. This is probably due to the oblique normal/leftlateral kinematics of the PFS (as deduced also by GPS and leveling data), indeed both vertical (lowering) and horizontal (eastwards) components of motion produce a strong stretching of the LOS (Line Of Sight) distance for ascending geometry, while the two components act in opposite ways for the descending geometry, resulting in lower LOS distance variations compared to the ascending data set. We analyzed also the ALOS pair referring to 21/02/2010 – 08/04/2010 time and acquired along the ascending track number 638. The ALOS interferogram clearly show three fringes corresponding to roughly 35 cm of LOS displacement. The preliminary modeling of the interferograms agree with the seismic information (very shallow faulting, seismic moment) and show that the medium behave elastically. In order to investigate the ground deformation pattern associated with this event, an application of the novel SISTEM (Simultaneous and Integrated Strain Tensor Estimation from geodetic and satellite deformation Measurements) approach is presented here. To achieve higher accuracy and get better constraint of the 3D components of the displacements, we improved the standard formulation of SISTEM approach, based on the GPS and a single DInSAR sensor, in order to take into account all the available dataset (GPS, leveling, ascending and descending ENVISAT C-Band interferograms and the ALOS L-Band data). The 3D displacement maps obtained using the SISTEM approach well show the kinematics of the PFS, and are able to reconstruct also the ground deformation affecting the whole investigated area, defining the movements of the north-eastern flank of the volcano. These results, which provide an accurate spatial characterization of ground deformation, are hence promising for future studies aimed at improving the knowledge about the kinematics of the active faults of Mt. Etna.
    Description: Published
    Description: Wien
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 1.10. TTC - Telerilevamento
    Description: 3.2. Tettonica attiva
    Description: open
    Keywords: Earthquakes ; fault ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.08. Theory and Models ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: The continuous GPS network operating on Mt. Etna with its 36 stations is currently one of the largest worldwide. The aim of this network is the evaluation of volcanic hazard and the modelling of the active sources. In this paper, we propose an in‐depth analysis and modelling of continuous GPS data collected at Mt. Etna from May 2008 to December 2010. The analyzed period has been divided into four different coherent phases: 1) 14 May 2008–02 August 2008 (deflation of the entire GPS network); 2) 02 August 2008–14 June 2009 (deflation of the summit area and inflation at lower heights); 3) 14 June 2009–21 May 2010 (inflation of the entire GPS network); 4) 21 May 2010–31 December 2010 (inflation at medium and low heights and end of the inflation in the summit area). Analytical models indicate a non-uniform deformation style revealing spaced sources acting at different time on different segments of a multi-level magma reservoir. The Etnean plumbing system imaged here is depicted as an elongated magma reservoir that extends from the volcano body downwards to about 6.5 km below sea level (b.s.l.), sloping slightly towards the North-West, with storage volumes located at about 6.5, 2.0 and 0.0 km (b.s.l.). The changes in position of the modelled pressure sources during the analyzed time intervals indicate that, throughout the 2008 eruptive period, the deformation field was mostly driven by the upward migration of magma. On the other hand, the pattern of deformation recorded after the end of the eruption strongly suggests a significant contribution of the magma overpressure generated by the gas boiling, thus outlining the importance of volatiles content in magma.
    Description: Published
    Description: L16306
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 1.9. Rete GPS nazionale
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: restricted
    Keywords: etna magma reservoir ; ground deformation ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.08. Theory and Models ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.01. Data processing ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: From October 2008 to November 2009, soil CO2, radon and structural field surveys were performed on Mt. Etna, in order to acquire insights into active tectonic structures in a densely populated sector of the south-eastern flank of the volcano, which is involved in the flank dynamics, as highlighted by satellite data (InSAR). The studied area extends about 150 km2, in a sector of the volcano where InSAR results detected several lineaments that were not well-defined from previous geological surveys. In order to validate and better constrain these features with ground data evidences, soil CO2 and soil radon measurements were performed along transects roughly orthogonal to the newly detected faults, with measurement points spaced about 100 m. In each transect, the highest CO2 values were found very close to the lineaments evidenced by InSAR observations. Anomalous soil CO2 and radon values were also measured at old eruptive fractures. In some portions of the investigated area soil gas anomalies were rather broad over transects, probably suggesting a complex structural framework consisting of several parallel volcano-tectonic structures, instead of a single one. Soil gas measurements proved particularly useful in areas at higher altitude on Mt. Etna (i.e. above 900 m asl), where InSAR results are not very informative/ are fairly limited, and allowed recognizing the prolongation of some tectonic lineaments towards the summit of the volcano. At a lower altitude on the volcanic edifice, soil gas anomalies define the active structures indicated by InSAR results prominently, down to almost the coastline and through the northern periphery of the city of Catania. Coupling InSARwith soil gas prospectingmethods has thus proved to be a powerful tool in detecting hidden active structures that do not show significant field evidences.
    Description: This work was funded by the DPC-INGV project “Flank”
    Description: Published
    Description: 27-40
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: CO2 ; Radon ; InSAR ; Faults ; Etna ; Volcano-tectonics ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: In May-July 2012, the Emilia Romagna (Northern Italy) was struck by a significant seismic sequence, characterized by two moderate-magnitude earthquakes: a Ml 5.9 event on May 20th, 2012 at 02:03:53 UTC, and a Ml 5.8 event on May 29th, at 07:00:03 UTC, about 12 km to the west of the first one. The earthquake sequence produced a total number of 20 casualties and severe and diffuse damages, mainly on historical buildings and commercial sheds.
    Description: Published
    Description: 773-779
    Description: 1.9. Rete GPS nazionale
    Description: JCR Journal
    Description: open
    Keywords: high-rate GPS ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...