ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Yamaguchi, Satoru; Ishizaka, Masaaki; Motoyoshi, Hiroki; Nakai, Sent; Vionnet, Vincent; Aoki, Teruo; Yamashita, Katsuya; Hashimoto, Akihiro; Hachikubo, Akihiro (2019): Measurement of specific surface area of fresh solid precipitation particles in heavy snowfall regions of Japan. The Cryosphere, 13(10), 2713-2732, https://doi.org/10.5194/tc-13-2713-2019
    Publication Date: 2023-01-13
    Description: The specific surface areas (SSAs) of solid precipitation particles (PPs) in Nagaoka—a city in Japan experiencing the heaviest snowfall in the country—were measured for four winters (from 2013/2014 - 2016/2017). The data include meteorological data (air temperature, relative humidity, wind speed, air pressure and wet-bulb temperature) when SSAs of PPs were measured. The data also include micro photos of each PPs.
    Keywords: Classification; Density, snow; Humidity, relative; Identification; Japan; Monitoring station; MONS; Nagaoka_SIRC; Present weather; Pressure, atmospheric; Snow and Ice Research Center; Snowfall, speed; Snow grain size; solid precipitation particles; Specific surface area; Specific surface area, snow; Temperature, air; Temperature, air, wet bulb; Uniform resource locator/link to image; Wind speed; Year of observation
    Type: Dataset
    Format: text/tab-separated-values, 1484 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-09-23
    Print ISSN: 0022-1430
    Electronic ISSN: 1727-5652
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-04-30
    Description: From 19 to 22 June 2013, intense rainfall and concurrent snowmelt led to devastating floods in the Canadian Rockies, foothills and downstream areas of southern Alberta and southeastern British Columbia, Canada. Such an event is typical of late-spring floods in cold-region mountain headwater, combining intense precipitation with rapid melting of late-lying snowpack, and represents a challenge for hydrological forecasting systems. This study investigated the factors governing the ability to predict such an event. Three sources of uncertainty, other than the hydrological model processes and parameters, were considered: (i) the resolution of the atmospheric forcings, (ii) the snow and soil moisture initial conditions (ICs) and (iii) the representation of the soil texture. The Global Environmental Multiscale hydrological modeling platform (GEM-Hydro), running at a 1 km grid spacing, was used to simulate hydrometeorological conditions in the main headwater basins of southern Alberta during this event. The GEM atmospheric model and the Canadian Precipitation Analysis (CaPA) system were combined to generate atmospheric forcing at 10, 2.5 and 1 km over southern Alberta. Gridded estimates of snow water equivalent (SWE) from the Snow Data Assimilation System (SNODAS) were used to replace the model SWE at peak snow accumulation and generate alternative snow and soil moisture ICs before the event. Two global soil texture datasets were also used. Overall 12 simulations of the flooding event were carried out. Results show that the resolution of the atmospheric forcing affected primarily the flood volume and peak flow in all river basins due to a more accurate estimation of intensity and total amount of precipitation during the flooding event provided by CaPA analysis at convection-permitting scales (2.5 and 1 km). Basin-averaged snowmelt also changed with the resolution due to changes in near-surface wind and resulting turbulent fluxes contributing to snowmelt. Snow ICs were the main sources of uncertainty for half of the headwater basins. Finally, the soil texture had less impact and only affected peak flow magnitude and timing for some stations. These results highlight the need to combine atmospheric forcing at convection-permitting scales with high-quality snow ICs to provide accurate streamflow predictions during late-spring floods in cold-region mountain river basins. The predictive improvement by inclusion of high-elevation weather stations in the precipitation analysis and the need for accurate mountain snow information suggest the necessity of integrated observation and prediction systems for forecasting extreme events in mountain river basins.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-04-28
    Description: In mountainous terrain, the snowpack is strongly affected by incoming shortwave and longwave radiation. In this study, a thorough evaluation of the solar and longwave downwelling irradiance products (DSSF and DSLF) derived from the Meteosat Second Generation satellite was undertaken in the French Alps and the Pyrenees. The satellite-derived products were compared with forecast fields from the meteorological model AROME and with analysis fields from the SAFRAN system. A new satellite-derived product (DSLFnew) was developed by combining satellite observations and AROME forecasts. An evaluation against in situ measurements showed lower errors for DSSF than AROME and SAFRAN in terms of solar irradiances. For longwave irradiances, we were not able to select the best product due to contrasted results falling in the range of uncertainty of the sensors. Spatial comparisons of the different datasets over the Alpine and Pyrenean domains highlighted a better representation of the spatial variability of solar fluxes by DSSF and AROME than SAFRAN. We also showed that the altitudinal gradient of longwave irradiance is too strong for DSLFnew and too weak for SAFRAN. These datasets were then used as radiative forcing together with AROME near-surface forecasts to drive distributed snowpack simulations by the model Crocus in the French Alps and the Pyrenees. An evaluation against in situ snow depth measurements showed higher biases when using satellite-derived products, despite their quality. This effect is attributed to some error compensations in the atmospheric forcing and the snowpack model. However, satellite-derived irradiance products are judged beneficial for snowpack modelling in mountains, when the error compensations are solved.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-10-01
    Description: Numerical weather prediction (NWP) systems operating at kilometer scale in mountainous terrain offer appealing prospects for forecasting the state of snowpack in support of avalanche hazard warning, water resources assessment, and flood forecasting. In this study, daily forecasts of the NWP system Applications of Research to Operations at Mesoscale (AROME) at 2.5-km grid spacing over the French Alps were considered for four consecutive winters (from 2010/11 to 2013/14). AROME forecasts were first evaluated against ground-based measurements of air temperature, humidity, wind speed, incoming radiation, and precipitation. This evaluation shows a cold bias at high altitude partially related to an underestimation of cloud cover influencing incoming radiative fluxes. AROME seasonal snowfall was also compared against output from the Système d’Analyse Fournissant des Renseignements Atmosphériques à la Neige (SAFRAN) specially developed for alpine terrain. This comparison reveals that there are regions of significant difference between the two, especially at high elevation, and possible causes for these differences are discussed. Finally, AROME forecasts and SAFRAN reanalysis have been used to drive the snowpack model Surface Externalisée (SURFEX)/Crocus (SC) and to simulate the snowpack evolution over a 2.5-km grid covering the French Alps during four winters. When evaluated at the experimental site of Col de Porte, both simulations show good agreement with measurements of snow depth and snow water equivalent. At the scale of the French Alps, AROME-SC exhibits an overall positive bias, with the largest positive bias found in the northern and central French Alps. This study constitutes the first step toward the development of a distributed snowpack forecasting system using AROME.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-10-02
    Description: Station-based serially complete datasets (SCDs) of precipitation and temperature observations are important for hydrometeorological studies. Motivated by the lack of serially complete station observations for North America, this study seeks to develop an SCD from 1979 to 2018 from station data. The new SCD for North America (SCDNA) includes daily precipitation, minimum temperature (Tmin⁡), and maximum temperature (Tmax⁡) data for 27 276 stations. Raw meteorological station data were obtained from the Global Historical Climate Network Daily (GHCN-D), the Global Surface Summary of the Day (GSOD), Environment and Climate Change Canada (ECCC), and a compiled station database in Mexico. Stations with at least 8-year-long records were selected, which underwent location correction and were subjected to strict quality control. Outputs from three reanalysis products (ERA5, JRA-55, and MERRA-2) provided auxiliary information to estimate station records. Infilling during the observation period and reconstruction beyond the observation period were accomplished by combining estimates from 16 strategies (variants of quantile mapping, spatial interpolation, and machine learning). A sensitivity experiment was conducted by assuming that 30 % of observations from stations were missing – this enabled independent validation and provided a reference for reconstruction. Quantile mapping and mean value corrections were applied to the final estimates. The median Kling–Gupta efficiency (KGE′) values of the final SCDNA for all stations are 0.90, 0.98, and 0.99 for precipitation, Tmin⁡, and Tmax⁡, respectively. The SCDNA is closer to station observations than the four benchmark gridded products and can be used in applications that require either quality-controlled meteorological station observations or reconstructed long-term estimates for analysis and modeling. The dataset is available at https://doi.org/10.5281/zenodo.3735533 (Tang et al., 2020).
    Print ISSN: 1866-3508
    Electronic ISSN: 1866-3516
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-01-01
    Description: Because of its location, Canada is particularly affected by snow processes and their impact on the atmosphere and hydrosphere. Yet, snow mass observations that are ongoing, global, frequent (1–5 days), and at high enough spatial resolution (kilometer scale) for assimilation within operational prediction systems are presently not available. Recently, Environment and Climate Change Canada (ECCC) partnered with the Canadian Space Agency (CSA) to initiate a radar-focused snow mission concept study to define spaceborne technological solutions to this observational gap. In this context, an Observing System Simulation Experiment (OSSE) was performed to determine the impact of sensor configuration, snow water equivalent (SWE) retrieval performance, and snow wet/dry state on snow analyses from the Canadian Land Data Assimilation System (CaLDAS). The synthetic experiment shows that snow analyses are strongly sensitive to revisit frequency since more frequent assimilation leads to a more constrained land surface model. The greatest reduction in spatial (temporal) bias is from a 1-day revisit frequency with a 91% (93%) improvement. Temporal standard deviation of the error (STDE) is mostly reduced by a greater retrieval accuracy with a 65% improvement, while a 1-day revisit reduces the temporal STDE by 66%. The inability to detect SWE under wet snow conditions is particularly impactful during the spring meltdown, with an increase in spatial RMSE of up to 50 mm. Wet snow does not affect the domain-wide annual maximum SWE nor the timing of end-of-season snowmelt timing in this case, indicating that radar measurements, although uncertain during melting events, are very useful in adding skill to snow analyses.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-09-21
    Description: Climate change projections still suffer from a limited representation of the permafrost–carbon feedback. Predicting the response of permafrost temperature to climate change requires accurate simulations of Arctic snow and soil properties. This study assesses the capacity of the coupled land surface and snow models ISBA-Crocus and ISBA-ES to simulate snow and soil properties at Bylot Island, a high Arctic site. Field measurements complemented with ERA-Interim reanalyses were used to drive the models and to evaluate simulation outputs. Snow height, density, temperature, thermal conductivity and thermal insulance are examined to determine the critical variables involved in the soil and snow thermal regime. Simulated soil properties are compared to measurements of thermal conductivity, temperature and water content. The simulated snow density profiles are unrealistic, which is most likely caused by the lack of representation in snow models of the upward water vapor fluxes generated by the strong temperature gradients within the snowpack. The resulting vertical profiles of thermal conductivity are inverted compared to observations, with high simulated values at the bottom of the snowpack. Still, ISBA-Crocus manages to successfully simulate the soil temperature in winter. Results are satisfactory in summer, but the temperature of the top soil could be better reproduced by adequately representing surface organic layers, i.e., mosses and litter, and in particular their water retention capacity. Transition periods (soil freezing and thawing) are the least well reproduced because the high basal snow thermal conductivity induces an excessively rapid heat transfer between the soil and the snow in simulations. Hence, global climate models should carefully consider Arctic snow thermal properties, and especially the thermal conductivity of the basal snow layer, to perform accurate predictions of the permafrost evolution under climate change.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-01-10
    Description: Physically based multilayer snowpack models suffer from various modelling errors. To represent these errors, we built the new multi-physical ensemble system ESCROC (Ensemble System Crocus) by implementing new representations of different physical processes in the deterministic coupled multi-layer ground/snowpack model SURFEX/ISBA/Crocus. This ensemble was driven and evaluated at Col de Porte (1325 m a.s.l., French alps) over 18 years with a high quality meteorological and snow dataset. 7776 simulations were evaluated separately accounting for the uncertainties of evaluation data. The ability of the ensemble to capture the uncertainty associated to modelling errors is assessed for snow depth, snow water equivalent, bulk density, albedo and surface temperature. Different sub-ensembles of the ESCROC system were studied with probabilistic tools to compare their performance. Results show that optimal members of the ESCROC system are able to explain more than half of the total simulation errors. Integrating members with biases exceeding the range corresponding to observations uncertainties is necessary to obtain an optimal dispersion, but this issue can also be a consequence of the fact that meterorological forcing uncertainties were not accounted for. ESCROC is a promising system to integrate numerical snow modelling errors in ensemble forecasting and ensemble assimilation systems in support of avalanche hazard forecasting and other snowpack modelling applications.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-07-22
    Description: Distributed snowpack simulations in the French and Spanish Pyrenees are carried out using the detailed snowpack model Crocus driven by the numerical weather prediction system AROME at 2.5 km grid spacing, during four consecutive winters from 2010 to 2014. The aim of this study is to assess the benefits of a kilometric-resolution atmospheric forcing to a snowpack model for describing the spatial variability of the seasonal snow cover over a mountain range. The evaluation is performed by comparisons to ground-based measurements of the snow depth, the snow water equivalent and precipitations, to satellite snow cover images and to snowpack simulations driven by the SAFRAN analysis system. Snow depths simulated by AROME–Crocus exhibit an overall positive bias, particularly marked over the first summits near the Atlantic Ocean. The simulation of mesoscale orographic effects by AROME gives a realistic regional snowpack variability, unlike SAFRAN–Crocus. The categorical study of daily snow depth variations gives a differentiated perspective of accumulation and ablation processes. Both models underestimate strong snow accumulations and strong snow depth decreases, which is mainly due to the non-simulated wind-induced erosion, the underestimation of strong melting and an insufficient settling after snowfalls. The problematic assimilation of precipitation gauge measurements is also emphasized, which raises the issue of a need for a dedicated analysis to complement the benefits of AROME kilometric resolution and dynamical behaviour in mountainous terrain.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...