ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  Geological Society Special Publication 216: 359-368.
    Publication Date: 2003-01-01
    Description: Clastic dykes and sills witness that subsurface sediment mobilization is often controlled by the brittle failure of units sealing' overpressured and liquidized sediments. Brittle failure also imposes a limit on the buoyancy pressure that can be exerted by hydrocarbon columns. Conventional understanding of brittle failure induced by increasing pore pressure (Pp) assumes that total minimum horizontal stress ({sigma}h) is unaffected by changes in pore pressure. However, total minimum horizontal stress increases from shallow, normally pressured sequences to deeper, overpressured sequences. Data from the Canadian Scotian Shelf, the North Sea and the Australian North West Shelf demonstrate such Pp/{sigma}h coupling, with the minimum horizontal stress increasing at approximately 60-80% of the rate of pore pressure (i.e., {Delta}{sigma}h/{Delta}Pp = 0.6-0.8). Hence, a greater increase in pore pressure can be sustained prior to brittle failure of units sealing overpressured compartments than would be predicted by conventional, uncoupled failure models. Furthermore, because total vertical stress is not similarly coupled to pore pressure, differential stress ({sigma}1-{sigma}3) reduces as pore pressure increases in normal fault regime basins. Thus, the mode of rock failure can not be inferred from differential stress in the stable state and Pp/{sigma}h coupling promotes tensile over shear failure.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...