ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-03-01
    Description: Double-shell covalent assemblies with the framework of the cube–rhombellane were recently proposed as potential drug delivery systems. Their potential to encapsulate guest molecules combined with appropriate surface modifications show great promise to meet the prerequisites of a drug carrier. This work reports the molecular design of such clusters with high molecular symmetry, as well as the evaluation of the geometric and electronic properties using density functional theory. The computational studies of the double-shell assemblies and their corresponding building blocks were conducted using the B3LYP/6-31G(d,p) method as implemented in Gaussian 09. The results show that the assembly of the building blocks is energetically favorable, leading to clusters with higher stability than the corresponding shell fragments, with large HOMO–LUMO gap values. In case of aromatic systems, interlayer stacking interactions between benzene rings contribute to the molecular geometry and stability. During geometry optimization the clusters preserve the high molecular symmetry of the building blocks.
    Electronic ISSN: 2073-8994
    Topics: Mathematics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...