ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-10-08
    Description: Most tungsten (W) and tin (Sn) deposits are associated with highly evolved granites derived from the anatexis of metasedimentary rocks. They are commonly separated in both space and time, and in the rare cases where the W and Sn mineralization are part of a single deposit, the two metals are temporally separate. The factors controlling this behavior, however, are not well understood. Our compilation of whole-rock geochemical data for W- and Sn-related granites in major W-Sn metallogenic belts shows that the Sn-related granites are generally the products of higher-temperature partial melting (~800 °C) than the W-related granites (~750 °C). Thermodynamic modeling of partial melting and metal partitioning shows that W is incorporated into the magma formed during low-temperature muscovite-dehydration melting, whereas most of the Sn is released into the magma at a higher temperature during biotite-dehydration melting; the Sn of the magma may be increased significantly if melt is extracted prior to biotite melting. At the same degree of partial melting, the concentrations of the two metals in the partial melt are controlled by their concentration in the protolith. Thus, the nature of the protolith and the melting temperature and subsequent evolution of the magma all influence the metallogenic potential of a magma and, in combination, helped control the spatial and temporal segregation of W and Sn deposits in all major W-Sn metallogenic belts.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...