ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-04-27
    Description: The impact of naturally occurring regulatory T cells (nTregs) on the suppression or induction of lung allergic responses in mice depends on the nuclear environment and the production of the pro-inflammatory cytokine interleukin 6 (IL-6). These activities were shown to be different in nTregs derived from wild-type (WT) and CD8-deficient mice (CD8−/−), with increased IL-6 levels in nTregs from CD8−/− mice in comparison to WT nTregs. Thus, identification of the molecular mechanisms regulating IL-6 production is critical to understanding the phenotypic plasticity of nTregs. Electrophoretic mobility shift assays (EMSA) were performed to determine transcription factor binding to four Il-6 promoter loci using nuclear extracts from nTregs of WT and CD8−/− mice. Increased transcription factor binding for each of the Il-6 loci was identified in CD8−/− compared to WT nTregs. The impact of transcription factor binding and a novel short tandem repeat (STR) on Il-6 promoter activity was analyzed by luciferase reporter assays. The Il-6 promoter regions closer to the transcription start site (TSS) were more relevant to the regulation of Il-6 depending on NF-κB, c-Fos, and SP and USF family members. Two Il-6 promoter loci were most critical for the inducibility by lipopolysaccharide (LPS) and tumor necrosis factor α (TNFα). A novel STR of variable length in the Il-6 promoter was identified with diverging prevalence in nTregs from WT or CD8−/− mice. The predominant GT repeat in CD8−/− nTregs revealed the highest luciferase activity. These novel regulatory mechanisms controlling the transcriptional regulation of the Il-6 promoter are proposed to contribute to nTregs plasticity and may be central to disease pathogenesis.
    Print ISSN: 1661-6596
    Electronic ISSN: 1422-0067
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...