ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-01
    Description: This study analyzes the microstructures and deformational characteristics of spinel peridotite xenoliths from the Nógrád-Gömör Volcanic Field (NGVF), located on the northern margin of a young extensional basin presently affected by compression. The xenoliths show a wide range of microstructures, bearing the imprints of heterogeneous deformation and variable degrees of subsequent annealing. Olivine crystal preferred orientations (CPOs) have dominantly [010]-fiber and orthorhombic patterns. Orthopyroxene CPOs indicate coeval deformation with olivine. Olivine J indices correlate positively with equilibration temperatures, suggesting that the CPO strength increases with depth. In contrast, the intensity of intragranular deformation in olivine varies as a function of the sampling locality. We interpret the microstructures and CPO patterns as recording deformation by dislocation creep in a transpressional regime, which is consistent with recent tectonic evolution in the Carpathian-Pannonian region due to the convergence between the Adria microplate and the European platform. Postkinematic annealing is probably linked to percolation of metasomatism by mafic melts through the upper mantle of the NGVF prior to the eruption of the host alkali basalt. Elevated equilibration temperatures in xenoliths from the central part of the volcanic field are interpreted to be associated with the last metasomatic event, which only shortly preceded the ascent of the host magma. Despite well-developed olivine CPOs in the xenoliths, which imply a strong seismic anisotropy, the lithospheric mantle alone cannot account for the shear wave splitting delay times measured in the NGVF, indicating that deformation in both the lithosphere and the asthenosphere contributes to the observed shear wave splitting.
    Print ISSN: 2169-9313
    Electronic ISSN: 2169-9356
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...