ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-08-31
    Description: Maintenance decision analysis is necessary to ensure the safe and stable operation of wind turbine equipment. To address gearboxes with a high failure rate in wind turbines, this paper establishes a new stochastic differential equation model of gearbox state transition to maximize the utilization of gearboxes. This model divides the state of the gearbox into two parts: internal degradation and external random interference. Weibull distribution and polynomial approximation were used to construct the internal degradation model of the gearbox. The external random interference is simulated by Brownian motion. On the basis of the analysis of monitoring data, the parameters of the gearbox state model were solved using the Newton–Raphson iterative method and entropy method. The state change of the gearbox was simulated in MATLAB, and the residual value between the predicted state and the real state was calculated. Compared with the state transformation model constructed by the traditional ordinary differential equation and the gamma distribution, the Weibull polynomial approximation stochastic model can better reflect the state of the device. With reliability set as the decision goal, the maintenance time of the gearbox is predicted, and the validity of the model is verified through case analysis.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...